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Abstract

Background: Retinal and optic disc images are used to assess changes in the retinal vasculature.

These can be changes associated with diseases such as diabetic retinopathy and glaucoma or

induced using ophthalmodynamometry to measure arterial and venous pressure. Key steps

toward automating the assessment of these changes are the segmentation and classification of

the veins and arteries. However, such segmentation and classification are still required to be

manually labelled by experts. Such automated labelling is challenging because of the complex

morphology, anatomical variations, alterations due to disease and scarcity of labelled data for

algorithm development. We present a deep machine learning solution called the multiscale

guided attention network for retinal artery and vein segmentation and classification (MSGANet-

RAV).

Methods: MSGANet-RAV was developed and tested on 383 colour clinical optic disc images from

LEI-CENTRAL, constructed in-house and 40 colour fundus images from the AV-DRIVE public data-

set. The datasets have a mean optic disc occupancy per image of 60.6% and 2.18%, respectively.

MSGANet-RAV is a U-shaped encoder-decoder network, where the encoder extracts multiscale

features, and the decoder includes a sequence of self-attention modules. The self-attention

modules explore, guide and incorporate vessel-specific structural and contextual feature infor-

mation to segment and classify central optic disc and retinal vessel pixels.

Results: MSGANet-RAV achieved a pixel classification accuracy of 93.15%, sensitivity of 92.19%,

and specificity of 94.13% on LEI-CENTRAL, outperforming several reference models. It similarly

performed highly on AV-DRIVE with an accuracy, sensitivity and specificity of 95.48%, 93.59% and

97.27%, respectively.
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Conclusion: The results show the efficacy of MSGANet-RAV for identifying central optic disc and

retinal arteries and veins. The method can be used in automated systems designed to assess vas-

cular changes in retinal and optic disc images quantitatively.

© 2022 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Retinal vascular abnormalities may indicate several sight-

threatening conditions and cerebral and cardiovascular dis-

eases. The optic nerve position is a potentially vulnerable ana-

tomical location for blood vessels in the presence of several

sight-threatening diseases because all blood vessels in the ret-

ina enter and leave through the centre of the optic nerve.1

Asymmetric morphological changes in the optic disc and reti-

nal vessels have been observed in the presence of hyperten-

sion2 and diabetic retinopathy (DR).3,4 DR is alone responsible

for 5.2% of blindness in Australia.5 Arteriolar vessel walls are

morphologically thinner and less elastic than veins.3 In the

presence of DR, arteries tend to be more tortuous and con-

stricted in diameter, which signifies the risk of stroke.4 Fur-

thermore, in the case of central retinal artery and vein

obstruction, a significant expansion is observed behind the

obstruction location of the central vessels, and the most sig-

nificant expansion is observed in the optic disc region.1 Such

obstruction leads to central retinal vein occlusion (CRVO) and

central retinal artery occlusion. Vascular occlusions cause

3.7% of blindness in Australia.5 Glaucoma is the second most

common cause of blindness (10.7%) in Australia5 and signifi-

cantly affects veins in both the retina and optic disc region. It

represents a common risk factor for CRVO.6 Moreover, major

changes in the central vein at the optic disc region are

detected during raised intracranial pressure (ICP).7

Physiologically, the retinal vessels carry haemoglobin.

Variations in light absorption of haemoglobin inside the ves-

sel can indicate quantitative vessel amplitude variations

related to vessel wall movement (i.e., pulsation). Pulse

amplitude at the optic disc region induced by ophthalmody-

namometry can indicate vessel wall changes from vascular

disease and be used for ICP prediction.8 Structural and func-

tional vascular variations can be automatically assessed

from the optic disc and retinal images.

Digital ophthalmoscopic photography offers non-invasive

visualisation of the retinal vasculature. Individual images can

be used to assess morphological attributes of retinal vessels

such as diameter, tortuosity, and branching patterns. Image

sequences can be used to assess vascular pulsation associated

with blood flow. Changes in retinal vasculature structure and

function are hallmarks of eye diseases, including glaucoma

and retinal vascular diseases such as DR, macular degenera-

tion and retinal vein occlusion. These changes can be assessed

to gauge severity, progression and response to treatment.9

Ophthalmodynamometry is a procedure used to induce

changes in central vascular pulsation via external compression

of the globe. Quantitative assessment of these changes per-

mits the measurement of vascular pressure and, indirectly,

intracranial pressure(ICP) prediction. General colour fundo-

scopy provides visualisation of the optic disc, macula, and

central and peripheral retina. However, these images have

low optic disc occupancy, limiting the vascular detail that can

be seen at the optic disc. Optically magnified colour optic disc

imaging is used to obtain more detailed images of the central

vessels in the optic disc region. These images can be used to

record ophthalmodynamometry-induced changes and analyse

the pulse wave variations along the central superior and infe-

rior vessels in the optic disc region,7 can be a foundation to

measure indirect ICP automatically.8

Automatic assessment of vascular changes from the colour

optic disc and retinal images from fundus photography is

highly reliant on the accurate segmentation of retinal blood

vessel pixels and classification of those vessel pixels as either

artery or vein pixels. Manual segmentation is time-consuming,

subjective, and impractical when large sets of high-resolution

images and image sequences are involved. Consequently, sev-

eral computational methods for the automatic segmentation

and classification of veins and arteries from such images have

been published. These methods can be broadly categorised

into two categories: (i) methods based on traditional machine

learning using handcrafted features (quantitative measure-

ments) and (ii) deep learning methods.

Handcrafted feature methods have used hierarchical

strategies to distinguish the artery and vein vessels from the

background.10�12 These methods have segmented the binary

maps of the vessels from the image. In other words, they

subtracted the vessels from the background (including the

optic disc and other visible components). They then found

artery or vein pixels using handcrafted (e.g., shape and

intensity profiles) feature-based classifiers. However,

artery-vein classification can be affected by the design of

extracting handcrafted features and poor segmentation

accuracy. Deep learning methods have set an avenue to seg-

ment and classify retinal vessels by automatically exploring

and learning quantitative features by identifying patterns

from retinal images.13�21 However, scarcity and imbalance

of artery-vein-background pixel data on individual images

pose additional challenges for deep-learning methods. Even

the appearance of clinical retinal and optic disc images can

vary depending on the instrument used and the practitioner.

These methods are still prone to misclassifying choroids as

vessels and identifying different segments of the same vessel

as both artery and vein at the pixel level. And, to the best of

our knowledge, no such automated methods have been pro-

posed to classify central vessels in the optic disc. Therefore,

we propose a deep-learning method called Multiscale

Guided Attention Network (MSGANet-RAV) for artery and

vein segmentation and classification from both optic disc

images and retinal images from fundus photography. We

train and test our method on both type of images and com-

pare the performance with several popular methods and

semantic segmentation and classification architectures,

including DeepLab,19 PspNet,22 U-Net,23 SegNet24 and the

state-of-the-art architecture.21
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Method

This section includes a description of the datasets of the

ophthalmic images on which the algorithm was trained and

tested, an overview of the proposed deep-learning architec-

ture and implementation details for semantic (pixel-wise)

vessel segmentation and artery-vein classification. Details of

the algorithm are available in the Supplementary Materials:.

It is a novel end-to-end multiscale guided attention deep

neural network architecture for classifying artery and vein

pixels in both optic disc and retinal images. We use a multi-

scale feature encoder to extract and fuse the variable scaled

features at an exact resolution of the deep encoding or

decoding network stages. We also include a guided attention

module that attends to the retinal structural information of

vasculature and emphasises vessel-like feature information

over background-like features.

This study was approved by the Human Research Ethics

Committee of the University of Western Australia and has

been carried out in accordance with The Code of Ethics of

the World Medical Association (Declaration of Helsinki).

Datasets

Two datasets were used in this study: (i) LEI-CENTRAL and (ii)

AV-DRIVE.25 Fig. 1 shows one example of a retinal image, its

binary vessel segmentation and artery-vein labels from each

dataset.

LEI-CENTRAL

This is an optic disc image dataset constructed from clinical

optic disc images collected at the Lions Eye Institute (LEI) in

Australia. The images were captured using a Goldman 3 mir-

ror lens attached to a Meditron ophthalmodynamometer

(Meditron, Volklingen, Germany) using a video slit lamp cam-

era recording of 25 fps (Canon 5D mark III, Japan). The field-

of-view (FoV) for the acquisition setup was 10B The eyes

were dilated using 1% Tropicamide during the image acquisi-

tion. The dataset comprises 383 images of the optically mag-

nified optic disc region. A set of 3-cardiac cycle videos were

captured at varying ophthalmodynametric forces. The cap-

tured frames dimension (width � height) was 1920 � 1080

pixels. The acquired frames from each subject were cropped

to remove the shadows, resulting in a different dimension

for separate acquisition. We generally selected the first

cropped frame as our input image. Thus, a multi-centred

image dataset was prepared from the videos. The optic disc

area varies in size for different subjects due to ODM lens

movement (sliding and pressure) on the eyeball. The aver-

age optic disc occupancy on the LEI-CENTRAL dataset image

is about 60.6% of the retinal content, providing detailed vas-

cular morphological and physiological information on the

optic disc surface. To the best of our knowledge, no public

dataset contains the labels of optic disc vessels such as

arteries and veins at an optically magnified level. For experi-

ments, we split the dataset into training and test sets at an

80:20 ratio, which resulted in 306 training and 77 test

images and labels. We also resized the images and associ-

ated ground truth labels to 512 � 512 pixel dimensions for

experiments.

Experts manually labelled the artery and vein pixels of

the both central superior and inferior vessels inside and out-

ward of the optic disc using a custom-written interactive

FIJI26 script. The task was considered challenging because of

the variable contrast and complex vessel structures. Numer-

ous points around each central superior and inferior vessel

boundary were selected to form a polygon. Each of the poly-

gons, including the pixels within, defines a vessel region.

Then each polygon was labelled as either artery (red) or

vein (blue), while the rest of the pixel area was labelled as

background (black). Thus, a ground truth masque was

Fig. 1 Sample images, vessel and artery-vein labels from LEI-CENTRAL and AV-DRIVE datasets. In both datasets, artery and vein pix-

els are labelled with red and blue colours, respectively. Undefined vessels in AV-DRIVE dataset are labelled in green colour.
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formed from an optic disc image. During artery-vein label-

ling, experts accessed the video of pulsating vessels at the

optic disc region and considered the functional and physio-

logical characteristics of the vessel system. For example,

the widest superior artery and vein through the optic disc

centre were generally selected as the central vein and cen-

tral artery, respectively.

AV-DRIVE

This is a publicly available retinal image dataset derived

from the DRIVE dataset,27 with pixel-wise artery-vein ground

truth labels.25 The images were obtained from a DR screen-

ing program in the Netherlands. The images were captured

using a non-mydriatic 3CCD camera with a 45°FoV. Such

camera has three independent charged-coupled integrated

circuits to receive filtered red, green and blue colour ranges

of light. Specifically, it contains 20 training and 20 test mac-

ula-centred images, including the associated ground truth

vessel segmentation labels and masks. The dimension of the

images and labels was 584 � 565 pixels. It has been used in

several retinal image analysis tasks, including vessel regis-

tration, segmentation and retinal disease progression.25 AV-

DRIVE is also a benchmark dataset for evaluating artery-vein

classification, which comprises classification labels for both

big and capillary vessels. However, unlike the LEI-CENTRAL

image, average disc occupancy on the DRIVE image is only

about 2.18% area of total retinal content on an image. The

major parts of the optic disc vessel pixels in the optic disc

centre were not annotated as an artery or vein; they were

rather labelled as undefined.

AV-DRIVE ground truth masks are publicly available.

According to Qureshi et al., artery-vein labellings were per-

formed by three observers (two computer vision experts and

one ophthalmologist).25 Observers revised their conflicting

labelling for the few vessel by sharing conflicting labels dis-

cussing between themselves. They made several assump-

tions about the characteristics of the retinal vascular system

(e.g. the vessels crossing each other must be from the oppo-

site classes and, the arteries are usually thinner and brighter

than the neighbouring veins). According to the authors of

AV-DRIVE,25 undefined vessel pixels lack distinguishable fea-

ture information to be recognized as an artery or vein pixel.

More details about the dataset are available in the original

articles.25,27

MSGANet-RAV

Our proposed MSGANet-RAV is a deep convolutional neural

network (CNN)28 architecture that segments and classifies

retinal and optic disc vessel pixels. CNN is an algorithm in

the field of artificial intelligence and machine vision that is

somewhat analogous to the working of the human visual sys-

tem. CNN has been designed to understand image pixels and

recognise the salient characteristics of an image. Activity

from the optic nerve is distributed to a visual field in the stri-

ate cortex, building up information about the world as the

eyes saccade and fixate. This information is physically organ-

ised at the primitive level as a kind of visual map consisting

of basic angular and colour features. These features are

then subsequently processed into more integrated patterns

at ever higher levels of abstraction, eventually being recog-

nised as objects and their relationships. CNN uses the convo-

lution operation (weighted sum of products of pixel

neighbourhoods) to explore patterns (colour, shape, size and

so on) in an visual image. A number of filter kernels (i.e.,

weights) are used to perform the convolution with the input

image to explore the patterns. Usually, the convolution ker-

nel spatial resolution is much smaller than the image. The

idea is to learn the patterns in smaller but connected grids

of pixel neighbourhoods covering the whole image. These

grids with numerous representations or patterns are then

densely connected in several layers, followed by a final layer

to classify the image. MSGANet is built upon a widely used

CNN-based U-Net23 architecture for pixel-wise segmentation

tasks (recognition and localization of contents). We extend

this in our MSGANet-RAV with addition of two major compo-

nents: multiscale (MS) feature encoding and guided atten-

tion (GA).

U-Net is a compound and multi-staged CNN that has also

been broadly used for biomedical image segmentation, e.g.,

retinal vessel segmentation. The architecture contracts and

expands spatial feature maps of an input image on its

encoder and decoder network, respectively. It automatically

explores patterns of vessels at each stage using repeated

operations e.g., convolutions, normalization and activation

functions. Patterns are learnt at lower resolution that are

projected onto higher resolution pixel space for classifica-

tion. We extends this architecture by incorporating multi-

scale encoding at all encoder stages. We also developed and

fused a guided attention module into the decoder network.

Multiscale (MS) feature encoding extracts various scaled

features of vessels in gradually enlarged receptive fields at

the same network stage. It enhances the representation of

vessels having variable widths, e.g., thin vessels at the

periphery and thick central vessels. As a feature encoder,

we adopted a Res2Net29 backbone model. Res2Net effec-

tively extracts vessel features on multiple scales at the

same stages. Technically, the Res2Net provides a coarse

representation of multiscale features analogous to range

enhancement of receptive fields at a network level.

Our proposed guided attention (GA) network at the

decoder stages of the network, guides the acquisition of

information toward salient elements of the vessel structure

in an image by feature combinations from two submodules:

guided filter (GF) and self-vessel attention (SVA). The GF

improves the identification of complex boundary structures

(capillary vessels and edge of thick vessels). It emphasizes

multiscale feature maps of the same resolution and pre-

serves structural information (i.e., edge) at the decoder

stage. Thus it highlights the foreground vessel pixels while

reducing the influence of the background pixels at the vessel

boundary by filtering less relevant background-like details.

SVA module refines vessel feature representation by explor-

ing the vessel distribution and additional contextual infor-

mation from a context learner layer. It explores the global

context from the surrounding spatial location of local vessel

features at the decoder stages to emphasize vessel-like fea-

tures in preference to background-like features. A separate

SVA block is also used at the end of the decoder to

strengthen the vessel context before the depth channel

reduction. The channel reduction or input to output
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mapping convolution lacks context from the surrounding pix-

els of a vessel pixel at the last stage.

Implementation

The implementation workflow of the deep-learning method

of automatic artery-vein classification and vessel segmenta-

tion is illustrated in Fig. 2. We discuss the major implemen-

tation aspects in the following sections.

Model training

We independently trained the model from scratch on the train-

ing sets of both datasets, i.e., we trained separate models for

the two datasets. Before the training, a vessel composer com-

posed a ground truth RGB artery-vein (AV) masque (artery: red,

vein: blue, background: black, undefined: green [only AV-

DRIVE]) into a ground truth vessel masque (vessel: white, back-

ground: black) by colouring the artery and vein pixel white.

The model was trained to jointly perform pixel-wise classifica-

tion tasks of the artery-vein-background label and vessel-back-

ground label. Artery-vein and vessel masks were decomposed

into corresponding class labels for each pixel. A patch extractor

was used to extract random training patches of 256 � 256 pix-

els from each training input image and corresponding AV and

vessel masks of the training set. Insufficient numbers of training

examples are a frequent problem in deep learning work. To syn-

thesize more training data from the datasets at hand without

introducing spurious information, we transformed the existing

images by horizontal and vertical flips, random rotations and x-

y shifts. In machine learning, this technique is called boosting.

We used the Adam optimiser with training with an initial learn-

ing rate of 0.0001 and a weight decay (2λ) of 0.00001 with L2

regularisation. We also set the minimum number of iterations

as 1000 and the maximum as 4000. These hyperparameters

were selected by experimentation for optimal joint-task

classification. In other words, these hyperparameters were

updated automatically during each training iteration to get fin-

est version of the trained model. We usually use a loss function

to evaluate the set of weights of the neural networks after

each training iteration. In our method, the final joint training

loss function was itself a self-learnable function of the joint

tasks vessel segmentation from background and artery-vein

classification by binary cross-entropy and general cross-entropy

criteria, respectively. After completion of training, we had an

artificially intelligent (AI) model, specifically a deep-learning

model, for automatically generating RGB AVand vessel segmen-

tation masks.

AI labelling

A patch extractor extracted sequential patches of 256 � 256

pixels from an input image of the test set of a dataset. Then,

those patches were tested on the trained deep-learning

model. This model generated outputs as a matrix of probabil-

ity scores for each class (e.g., Artery, Vein or Background) for

the corresponding patches. Similarly to the semantic segmen-

tation approach of U-Net, the last network layer was followed

by an 1 � 1 convolution with a sigmoid activation function to

get the probability scores. Then, a patch stitcher sorted and

stitched the sequential output patches (with probability

scores) to form the output matrix of the test image. Then, a

masque composer composed an RGB AV masque by labelling

one class label for each pixel according to its maximum proba-

bility score of the classes and coloured the pixel based on its

respective class label. The vessel masque was generated from

the RGB AV masque generated by a vessel composer.

System and platform specification

Method development and experiments were conducted on an

Intel� CoreTM i9�10900X central processing unit with a

Fig. 2 Workflow of Automatic Deep-Learning based Vessel Segmentation and AV Classification.
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processing speed of 3.7 GHz, primary memory of 128GB of

space, and a Compute Unified Device Architecture30 (CUDA)1

enabled graphical processing unit (NVIDIA� TITAN RTXTM)2 run-

ning under Linux (Ubuntu 20.04LTS3). We used CUDA deep

neural network library31 (cuDNN 11.0)4 along with PyTorch32

backend. However, few comparing methods for the LEI-CEN-

TRAL dataset were trained and tested using the TensorFlow33

(TensorFlow-GPU 2.3.1)5 deep learning framework.

Result

This section presents the results of artery-vein classification

and vessel segmentation from the background. We evaluated

the independent test subsets of both LEI-CENTRAL and AV-

DRIVE datasets. The same training and test fractions were

used for comparative analysis between methods. LEI-CEN-

TRAL contains images for one (26 subjects) or both eyes (101

subjects) for 147 subjects (Female 76, Male 71) between 16

and 96 years of age, from multiple imaging sessions. Most of

the subjects were ethnically Caucasian (60%), while 20%, 8%

and 5% of subjects were Asian, African and Hispanic, respec-

tively. Of the patients, 37 had healthy eyes, while other

vision-related conditions were diagnosed in at least one eye

for the remainder (Idiopathic Intracranial Hypertension 39,

Central Retinal Vein Occlusion 30, Glaucoma 15, AV Nip 21,

Papilledema 2, Idiopathic Optic Neuropathy 1). AV-DRIVE

contains images from a study of 453 subjects between 31

and 86 years of age. Amongst the 40 images of this public

dataset, there were seven abnormal cases (background DR,

pigment epithelium changes, the pigmented scar in the

fovea and vascular abnormalities).

As a joint-task problem, we used separate sets of evalua-

tion metrics for vessel segmentation from background and

artery-vein classification. Here, each semantic pixel location

was considered i ¼ fx; yg in the prediction map and target

map. Both maps had a dimension of M�M, where M is the

height and width of the maps. We used four benchmark evalu-

ation metrics for vessel segmentation: sensitivity (SEves),

specificity (SPves), accuracy (ACCves) and dice score of vessels

(Diceves). These metrics reflect the model’s ability to segment

vessel pixels from the background.21 We used three bench-

mark metrics for artery-vein classification.21 These were bal-

anced accuracy (BACCAV), sensitivity (SEAV) and specificity

(SPAV). These metrics showed the global model performance

on artery and vein classification. We also used dice scores of

arteries (DiceA) and vein (DiceV ). We chose the balanced

accuracy metric because our datasets had class imbalance, i.

e., large background to artery-vein pixels ratio. We consid-

ered artery and vein as true positive and true negative for

simplicity, respectively. Since we were solving a pixel classifi-

cation problem, height� width numbers of data points were

required for classification of each test image. We evaluated

each of the test images separately and computed the mean

performance scores of the evaluation metrics. 95% CI for the

scores were constructed for the experimental test subset of

both datasets. For all the above-mentioned metrics, a higher

value represents a superior performance.

AV classification and vessel segmentation

Our trained model on optic disc images (LEI-CENTRAL) from

MSGANet-RAV architecture automatically generated optic

disc central artery-vein classification masks and binary vessel

segmentation masks. Table 1 summarises evaluation scores of

classification and vessel segmentation on the LEI-CENTRAL

dataset. We reported the artery-vein classification scores,

balanced accuracy, sensitivity and specificity of 93.15%,

92.17% and 94.13%, respectively. The dice scores of the vein

and artery classifications were 66.59% and 62.13%, respec-

tively. We also reported the binary vessel segmentation

scores, vessel accuracy, sensitivity, specificity and dice scores

of 93.07%, 68.07%, 96.71% and 70.54%, respectively. We also

reported evaluation scores for widely used deep retinal seg-

mentation architectures, including DeepLab,19 PspNet,22 U-

Net23 and SegNet24 and state-of-the-art multiscale vessel con-

straining architecture (VC��Net)21 in Table 1. We obtained

separate deep learning models by following a similar training

Table 1 Evaluation Scores of artery-vein classification and vessel segmentation from background on the test set of LEI-CENTRAL

dataset (All scores are reported in percent. Top scores are highlighted in boldface).

Methods Artery-Vein Classification (%) Vessel Segmentation from Background (%)

BACCAV SEAV SPAV DiceV DiceA ACCVES SEVES SPVES DiceVES

MSGANet-RAV (GF+SVA) [ours] 93.15 92.17 94.13 66.59 62.36 93.07 68.06 96.71 70.54

MSGANet-RAV (GF) [ours] 92.56 90.03 95.09 65.67 59.48 92.78 63.05 97.27 68.40

VC��Net21 90.79 89.56 92.02 63.83 56.77 92.37 66.17 96.42 68.44

Deeplab19 (ResNet50) 88.20 85.92 90.47 64.95 55.81 91.48 66.64 96.16 70.11

PspNet22 (ResNet50) 86.42 84.27 88.49 62.75 51.20 90.94 62.68 96.20 67.36

SegNet24 (ResNet50) 85.56 84.16 86.96 64.22 52.39 91.28 66.42 95.85 69.50

SegNet24 (VGG16) 89.13 88.16 90.23 60.95 50.35 90.67 54.84 97.16 63.10

U-Net23 (ResNet50) [Baseline] 87.21 85.61 88.79 64.74 55.74 91.48 67.02 96.08 70.33

U-Net23 (VGG16) 88.11 86.66 89.56 62.94 53.89 90.97 62.72 96.17 67.47

Artery-Vein Classification: BAACAV: Balanced Accuracy, SEAV: Sensitivity, SPAV: Specificity, DiceV: F1 of Vein, DiceA: F1 of Artery.

Vessel Segmentation: ACCVES: Accuracy, SEVES: Sensitivity, SPVES: Specificity, DiceVES: F1 of Vessel.

1 https://developer.nvidia.com/cuda-11.0-download-archive?

target_os=Linux
2 https://www.nvidia.com/en-au/deep-learning-ai/products/

titan-rtx/
3 https://releases.ubuntu.com/20.04/
4 https://developer.nvidia.com/rdp/cudnn-archive
5 https://www.tensorflow.org/install/pip
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approach for comparing architectures using identical training

sets. Models generated the artery-vein and vessel segmenta-

tion masks from the exact test RGB images. Fig. 3 illustrates a

few comparable artery-vein semantic classification maps

from our MSGANet-RAV and other architectures.

MSGANet-RAV generated the retinal artery-vein classifi-

cation masks and binary vessel segmentation masks from the

trained model on the AV-DRIVE25 fundus image dataset.

Table 2 summarizes the comparable classification and seg-

mentation results. Since it is publicly available, we used the

provided separate train and test images for training and

evaluation of the model, respectively. We noted mean

artery-vein classification scores: balanced accuracy, sensi-

tivity, specificity, dice-vein and dice-artery of 95.48%,

93.59%, 97.27%, 79.39% and 75.48%, respectively. We

obtained vessel segmentation accuracy, sensitivity,

specificity and dice scores of 95.61%, 83.51%, 97.47% and

82.73%, respectively. We also reported the classification and

segmentation performance of state-of-the-art21 and other

popular methods10�12,15,17,20,34 in Table 2. For comparison,

we used the evaluation scores from the associated papers of

the other popular methods. Otherwise, we generated resul-

tant artery-vein masks and binary vessel segmentation

masks from their implementation codes and evaluated

them.

Table 3 reports the 95% confidence interval (CI) for the

accuracy of artery vein classification and vessel segmenta-

tion from the background. It includes the performance

scores MSGANet-RAV, state-of-the-art VC��NET, baseline U-

Net and other semantic segmentation architectures. Our

MSGANet-RAV achieved 95% CI for artery-vein balanced clas-

sification accuracy from 90.34% to 95.96% and 94.39% to

Fig. 3 Semantic classification maps of the optic disc’s central artery and vein pixels resulting from different deep segmentation

architectures. Artery and vein pixels are labelled with red and blue colours, respectively.

Table 2 Evaluation scores of artery-vein classification and vessel segmentation from background on the test set of AV-DRIVE

dataset. (All scores are reported in percentage. Top scores are highlighted in boldface).

Methods Artery-Vein Classification (%) Vessel Segmentation from Background (%)

BACCAV SEAV SPAV DiceV DiceA ACCVES SEVES SPVES DiceVES

MSGANet-RAV (GF+SVA) [ours] 95.48 93.59 97.27 79.39 75.48 95.61 83.51 97.47 82.73

MSGANet-RAV (GF) [ours] 95.13 94.23 96.04 79.03 75.01 95.23 81.51 97.28 81.25

VC��Net21 [Experiment] 89.29 85.79 92.78 73.89 67.94 94.43 81.53 95.62 79.71

VC��Net21 [Paper] 95.42 93.51 97.32 79.71 76.05 95.7 82.58 97.66 82.96

TR-GAN20 95.46 94.53 96.31 N/A N/A N/A N/A N/A N/A

Ma et al.17 94.50 93.40 95.50 N/A N/A 95.7 79.16 98.11 N/A

Zhao et al.12 93.51 93.11 94.10 N/A N/A N/A N/A N/A N/A

Xu et al.10 92.30 92.90 91.50 N/A N/A N/A N/A N/A N/A

Xu et al.15 90.00 N/A N/A N/A N/A 95.4 94.4 95.5 N/A

U-Net23 [Baseline] 91.22 91.45 90.83 75.86 70.89 95.41 83.19 97.13 81.62

Estrada et al.11 93.50 93 94.10 N/A N/A N/A N/A N/A N/A

Dashtbozorg et al.34 87.40 90 84 N/A N/A N/A N/A N/A N/A

Artery-Vein Classification: BAACAV: Balanced Accuracy, SEAV: Sensitivity, SPAV: Specificity, DiceV: F1 of Vein, DiceA: F1 of Artery.

Vessel Segmentation: ACCVES: Accuracy, SEVES: Sensitivity, SPVES: Specificity, DiceVES: F1 of Vessel.

VC-Net21 [Experiment]: Reproduction from the program code provided in the paper. Excluded pre-processing on dataset image or post-

processing on resultant maps for a fair and consistent comparison with all other techniques.

VC-Net21 [paper]: Results obtained from the paper. Results are reported with pre-processing on dataset images and post-processing on

resultant maps.

N/A: Not available in the respective paper.
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96.57% for LEI-CENTRAL and AV-DRIVE, respectively. 95% CI

for vessel segmentation accuracy was from 92.44% to 93.7%

and 95.43% to 95.79%, respectively.

Ablation study of MSGANet-RAV

In artificial intelligence, an ablation study evaluates the

effective knowledge representation in each of its major

parts (modules).35 It can also assess relative variation of

classification performances due to the addition or removal

of those parts. We evaluated a set of trained models for

each ablated deep-learning network (network after deacti-

vation of modules) on both datasets.

Table 4 reports the detailed ablation study for MSGANet-

RAV on the removal of MS, GF and SVA modules. Models

trained on LEI-CENTRAL and AV-DRIVE by combining all MSGA-

Net-RAV modules achieved 93.15% and 95.38% of balanced

accuracy, respectively, while the U-Net achieved 88.11% and

91.22%, respectively. For chronological deactivation of only

SVA and both SVA and GF module, the balanced accuracy

dropped to 92.56% and 89.27% for LEI-CENTRAL, and to

95.13% and 93.66% for AV-DRIVE. Fig. 5 shows receiver operat-

ing characteristic curves (ROC) for both tasks, artery-vein

classification and vessel segmentation from the background,

to validate the effectiveness of major modules in classifying

each pixel (Fig. 5). Probabilities of the vein and artery

classification for all pixels are considered thresholds. The

area under these curves (AUC-ROC) for vessel segmentation

and artery-vein classification from the MSGANet-RAV (GF

+SVA) model on the LEI-CENTRAL test set are 0.9826, 0.9910

and 0.9939, respectively. AUC-ROC scores for vessel segmen-

tation and artery-vein classification from MSGANet-RAV on

the AV-DRIVE dataset are 0.9911, 0.9929 and 0.9932, respec-

tively.

Fig. 4 illustrates a set of AI-generated artery-vein masks

of a test example from the AV-DRIVE dataset by adding MS,

GF and SVA modules with core U-Net (subjectively reverse

ablation). It permits a visual assessment of the modules’

effectiveness on the pixel classification and segmentation

from background over salient locations in an image. Three

square regions (green, cyan and yellow) were selected to

observe the continuity and boundary of central and thick

vessels, and vessel intersections based on lost and misla-

belled vessel pixels.

Discussion

Our classification metrics—balanced accuracy, sensitivity,

and specificity—are more focused on the artery-vein class

than the background. Consequently these metrics penalize

the scores if a specific pixel gets misclassified between

artery-vein. The inclusion of background class does not

Table 3 Classification accuracy confidence intervals (95% CI) of methods on the LEI-CENTRAL and AV-DRIVE dataset test subsets

(All scores are reported in percent. Top scores are highlighted in boldface).

Methods Artery-Vein Classification (%) Vessel Segmentation from Background (%)

LEI-CENTRAL AV-DRIVE LEI-CENTRAL AV-DRIVE

MSGANet-RAV (GF+SVA) [ours] 90.34 - 95.96 94.39 - 96.57 92.44 - 93.7 95.43 - 95.79

MSGANet-RAV (GF) [ours] 89.73 - 95.39 94.03 - 96.23 92.11 - 93.45 95.07 - 95.39

VC��Net21 [Experiment] 86.89 - 94.69 88.1 - 90.48 89.81 - 94.93 94.27 - 94.59

U-Net23 [Baseline] 84.44 - 89.98 89.84 - 92.6 90.76 - 92.2 95.24 - 95.58

Deeplab19 85.25 - 91.15 n/p 90.72 - 92.24 n/p

PspNet22 83.88 - 88.96 n/p 90.18 - 91.7 n/p

SegNet24 82.17 - 88.95 n/p 90.58 - 91.98 n/p

n/p: not performed in our experiments.

Table 4 Ablation study of MSGANet-RAV on LEI-CENTRAL and AV-DRIVE datasets by artery-vein classification performances. (All

scores are reported in percentage. @ symbol refers to active module. Top scores are highlighted in boldface).

Dataset Methods Classification Performance%

U-Net MS GF SVA BACCAV SEAV SPAV

LEI-CENTRAL @ @ @ @ 93.15 92.17 94.13

@ @ @ 92.56 90.03 95.09

@ @ 89.27 85.57 92.97

@ 88.11 86.67 89.56

AV-DRIVE @ @ @ @ 95.38 93.59 97.27

@ @ @ 95.13 94.23 96.04

@ @ 93.66 92.09 95.14

@ 91.22 91.45 90.83

Artery-Vein Classification: BACCAV: Balanced Accuracy, SEAV: Sensitivity, SPAV: Specificity
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reflect the accuracy of artery-vein classification because

about 85% and 92% of image pixels are labelled background

at public LEI-CENTRAL and AV-DRIVE datasets, respectively.

The balanced accuracy was calculated from the average of

specificity and sensitivity scores of artery-vein classification.

Experimental results and evaluation scores show that our

architecture achieved state-of-the-art performance in cen-

tral optic disc superior and inferior artery-vein classification

and central optic disc vessel segmentation (LEI-CENTRAL).

Even all classification scores, including the dice scores of

artery and vein and central vessel segmentation scores, are

also superior to those of models from other comparing meth-

ods, as reported in Table 1. Therefore, we consider a U-Net

model our baseline because the proposed MSGANet-RAV was

developed following the U-Net23 structure. Although our

core architecture followed a similar strategy of multiscale

feature extraction to VC��Net using Res2Net,29 our model

has effectively emphasised the vessel boundaries with the

help of a guided attention module. Optic disc central artery-

vein classification balanced accuracy, sensitivity, and speci-

ficity of MSGANet-RAV model are 5.04%, 5.5% and 4.57% mar-

gins over the baseline model.23

This evaluation of artery-vein ground truth pixels in retinal

fundus images (AV-DRIVE) is more challenging than on the

already segmented vessels. Classification of vessels is relatively

more complex in the presence of thin and capillary vessels. On

the other hand, if segmentation and vessel classification is not

required, major vessel pixels classification becomes easier. We

evaluated the classification performance of our model on

artery-vein ground truth pixels, while most other methods con-

sidered only segmented vessel pixels. Retinal artery-vein clas-

sification balanced accuracy, sensitivity, and specificity of

MSGANet-RAV are 4.16%, 2.14% and 6.44% margins over the

baseline.23 However, we reported the evaluation scores for

state-of-the-art VC��Net21 from our experiments and the

paper. Our implementation (from the public repository of the

author) gets lower scores for a few performance metrics than

the scores reported in the referred paper.21 VC��Net has

implemented pre-processing on the dataset with contrast-lim-

ited histogram equalisation, gamma adjustment, and dataset-

wise normalisation. However, the specific parameters for the

hierarchical methodology of the pre-processing were unavail-

able. For this reason, we have not performed any pre-process-

ing when applying VC��Net to AV-DRIVE. Furthermore, such

pre-processing is infeasible for the LEI-CENTRAL dataset due to

notable differences (disc occupancy, dataset-wise contrast var-

iation, dimension) in image content. We did not apply any pre-

processing on dataset images or post-processing on artery-vein

classification maps on both datasets because of having the

above-mentioned issues and maintaining consistency with the

model’s generalisation capability on clinical images. MSGANet-

RAV has a noteworthy classification improvement over the

baseline U-Net.6 As reported in Table 4, 95% CI accuracy of

MSGANet-RAV and U-Net are also non-overlapping for both

tasks. Although the classification accuracy of MSGANet-RAV has

a trivial improvement over State-of-the-art VC��Net,5 we

argue that a 1% improvement in pixel classification accuracy is

correctness of classification for 2621 pixels on an image of 512

� 512 dimension.

The Ablation study in Table 4 also validates the effective-

ness of MSGANet-RAV over the baseline and state-of-the-art

architectures where both intervals of artery-vein classifica-

tion and vessel segmentation are superior. However, unde-

fined vessel pixels in AV-DRIVE mostly reflect capillaries and

the vessels inside the optic disc. According to the authors of

AV-DRIVE25, undefined vessel pixels lack distinguishable pat-

terns to identify an artery or vein. However, these can be

segmented from the background. Our deep-learning model

labelled a pixel as undefined if the output did not have a

maximum probability for either artery, vein or background

classes, i.e., the model was trained and tested on four clas-

ses of pixels. According to our experimental results of

VC��Net without any processing steps reported in Table 2,

our architecture achieves superior performance for the met-

rics compared to the latest VC��Net and other models in the

AV-DRIVE dataset.

We observed that some background and vessel structures

likely have close feature representation due to higher scale

convolution, pooling and inconsistent smoothing on the

boundary between vessel and background without any

attention to boundary and vessel. Incorporating GF improves

boundary representation and relatively increases balanced

accuracy, sensitivity and specificity by about 4.45%, 3.36%,

and 5.53% for the LEI-CENTRAL dataset and 3.91%, 2.78%,

and 5.21% for AV-DRIVE, respectively. SVA improves accu-

racy, although there are some trade-offs on sensitivity and

specificity for both datasets. The balanced accuracy, sensi-

tivity and specificity are relatively increased by about

5.04%, 5.5%, 4.57% for LEI-CENTRAL and 4.16%, 2.14% and

6.44% for AV-DRIVE, respectively. We infer the effectiveness

of GF and SVA modules for retinal artery-vein classification

because of a substantial margin over the baseline model.

The area under the receiver operating characteristic curve

(AUC-ROC) also gradually improves after incorporating the

guided attention modules with baseline architecture

(Table 4, Figs. 4 and 5).

Fig. 4 Artery-Vein classification maps of different modules for retinal fundus images from AV-DRIVE dataset. Three regions are

enlarged in the second row. Artery and vein pixels are labelled with red and blue colours, respectively. Module components are added

from left to right with baseline U-Net.
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We observed retinal bifurcating and crossover thick (cen-

tral) and thin vessels in Fig. 4. All three selected regions

(Fig. 4) in each masque show that the baseline model has

more mislabelled pixels. First, the baseline U-Net model can

lose segmentation pixels from big vessels (green region).

Although MS recovered pixels, it still lacks some connecting

pixels. With GA, structural vessel attention improved vessel

segmentation and classification without losing segmentation

pixels in big vessels. Thin and capillary vessels are hard to

segment due to background-concentrated features. Hence,

misclassification can be seen for those vessels in the cyan

region. MSGANet-RAV has provided the correct segmentation

and classification for such a bifurcating thin segment. The

yellow region has crossover vessel segments that the base-

line model misclassifies. Adding MS, GF and SVA modules

with the core of baseline U-Net reduces the chance of such

incidence by distinctive vessel features with the surrounding

context. As shown in Fig. 4, MSGANet-RAV is more effective

in classifying bifurcation, crossover and capillary vessels

than the baseline.23 Therefore, MSGANet-RAV architecture is

reasonably suitable for automatic semantic vessel segmen-

tation from background and artery-vein classification tasks

on both ophthalmic image datasets.

Although both datasets contain ophthalmoscopic images,

the images show different degrees of vasculature detail in

the retina. Central artery-vein classification and

segmentation from the background from LEI-CENTRAL

images are more challenging than for AV-DRIVE because of

complex vessel topology around the optic nerve centre,

large overlapping pixel blocks at bifurcating or crossover

segments and the loss or fading appearance of vessels at the

disc centre. The ground truth masque only reflects the cen-

tral superior and inferior artery-vein while other vessels are

considered to be of lesser importance like the background.

Therefore, the evaluation scores (specifically sensitivity and

dice scores) of classification and segmentation are inferior

on LEI-CENTRAL compared to AV-DRIVE.

Vision degrading diseases such as glaucoma, DR, CRVO, IIH

and macular degeneration are associated with vascular

changes. For example, the artery-vein ratio is a marker of

detecting and identifying the progression of DR and obstruc-

tion in the central retinal vein refers to the CRVO, which is

more likely to be observed in patients with diabetes and other

blood flow-related diseases. Accurate retinal vessel segmen-

tation and artery-vein classification could be used to quanti-

tatively analyse the vascular changes in retinal images and

rapidly diagnose related diseases. Moreover, analysing vascu-

lar changes from temporally captured optic disc sequences

could be used to assess pulse amplitude on optic disc veins

and arteries to measure ICP non-invasively.8 Currently, exter-

nal ventricular draining by creating holes in the skull and lum-

bar puncture are traditional approaches to measuring ICP.

Fig. 5 Comparison of the receiver operator characteristic curves (ROC) of the models from major MSGANet-RAV modules on LEI-

CENTRAL and AV-DRIVE datasets. (a-b): semantic vessel segmentation; (c-f): artery-vein classification.
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Such surgical procedures can introduce infections to the cen-

tral nervous system and require special setup and observa-

tions. Our MSGANet-RAV could be a vital part of an

automated non-invasive ICP measurement technique from

the pulse amplitude analysis of optic disc vessels. This process

currently depends on manual expert labelling of optic disc

artery and vein. An automated and non-invasive ICP measure-

ment could be useful when direct ICP measurement is not

possible, such as in a traumatic brain injury when quick man-

agement of increased ICP could reduce the effect on the ner-

vous system. Clinicians also could use such tools to rapidly

observe the ICP correlate with underlying eye conditions such

as swollen optic nerve, papilledema and IIH.

Limitations

Our model generally shows superior performance in optic

disc central vessel classification and segmentation. How-

ever, there are a few cases where our model was not as

effective. However, some regions are visibly indistinguish-

able from the nearby background pixels (Fig. 3, row 2). In

such circumstances, arteries have become less distinguish-

able from the background due to the light intensity profile

and retinal light reflex issue due to lack of haemoglobin.

Models from all Table 1 architectures have resulted in poor

classification maps for a few cases. MSGANet-RAV model

comparatively generates better maps than other models. It

should be noted that observers have considered the pulsa-

tions from the video to estimate the vessel boundary and

class for the LEI-CENTRAL dataset. Therefore, an architec-

ture capable of analysing sequential frames in a single image

could be effective in such cases.

Conclusion

This paper proposes a multiscale guided attention network

named MSGANet-RAV for pixel-wise retinal artery-vein clas-

sification. The proposed architecture employed a fusion of

multiscale feature exploration and a sequence of GF and

context learnable SVA modules. As a joint task of pixel iden-

tification of ophthalmic images, the model also included a

learnable joint-task loss method where the weights of the

individual task losses were balanced to improve the artery-

vein classification. Multiscale features of these images were

refined through the two-stage GA module. Structural infor-

mation on variant vessels was explored at the first stage of

GA. Later, more refined feature representations were

obtained by contextual vessel information fusing with the

vessel skeleton (probability map). MSGANet-RAV achieved

state-of-the-art performance on the LEI-CENTRAL dataset

and comparable performance on the AV-DRIVE dataset, using

several benchmark metrics.

In future, MSGANet-RAV could be used in automated sys-

tems designed to quantitatively assess morphological and

functional vascular changes in retinal and optic disc images.

The method can be tested in clinical settings for early diag-

nosis and progression of sight-threatening conditions such as

vascular occlusions, glaucoma, and diabetic retinopathy and

for automated indirect measurement of ICP.
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