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Abstract

Optical coherence tomography (OCT) has revolutionized ophthalmic clinical practice and

research, as a result of the high-resolution images that the method is able to capture in a fast,

non-invasive manner. Although clinicians can interpret OCT images qualitatively, the ability to

quantitatively and automatically analyse these images represents a key goal for eye care by pro-

viding clinicians with immediate and relevant metrics to inform best clinical practice. The range

of applications and methods to analyse OCT images is rich and rapidly expanding. With the

advent of deep learning methods, the field has experienced significant progress with state-of-

the-art-performance for several OCT image analysis tasks. Generative adversarial networks

(GANs) represent a subfield of deep learning that allows for a range of novel applications not pos-

sible in most other deep learning methods, with the potential to provide more accurate and

robust analyses. In this review, the progress in this field and clinical impact are reviewed and the

potential future development of applications of GANs to OCT image processing are discussed.

© 2022 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

The ability to non-invasively image the eye with optical

coherence tomography (OCT) has transformed the fields of

optometry and ophthalmology. Quantifying these images

and numerically tracking changes (e.g. in tissue morphology)

helps to better drive clinical decision making. OCT is a non-

invasive coherent imaging method that is used to capture

high-resolution cross-sectional images within optical scat-

tering tissues such as the retina and choroid in the posterior

segment of the eye (Fig. 1A). The analysis of such images is

widely performed in both research and clinical practice for a

range of tasks including measuring retinal and choroidal

layer thickness, for monitoring disease progression and for

quantifying treatment outcomes (Fig. 1B).

Deep learning methods, a subfield of machine learning,

have enhanced image analysis in OCT including for applica-

tions such as retinal and choroidal layer segmentation,1-4 optic

nerve head segmentation,2 fluid region segmentation,3, 5 and

pathology detection6-10 and/or grading.11,12 These methods

can provide automatic, accurate and efficient solutions com-

pared to traditional manual analysis by human observers. Gen-

erative adversarial networks (GANs) are an exciting new group

of deep learning methods which have seen significant growth,

progress and adoption in many areas in recent years, particu-

larly in the field of medical image analysis where GANs have

been applied to a number of ophthalmic imaging modalities
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including retinal fundus photography, OCTangiography (OCTA)

and OCT. This review will focus exclusively on applications to

OCTwhere GANs have demonstrated the ability to “generate”

OCT images that are difficult to discern from real OCT images,

even for experienced clinicians.13 For instance, Fig. 2 provides

examples of four OCT images, three of which are generated

by a GAN and one of which is a real OCT image (we encourage

the reader to discern which it is). Given the high level of

image quality, these GAN images may be used to train clini-

cians and even used as additional data for enhancing image

analysis algorithms.

A GAN is a powerful and versatile deep learning method,

particularly as a generative method for image synthesis (i.e.

image generation) and related applications. The original

GAN14 (Fig. 3) consists of two deep neural networks, a gener-

ator and a discriminator, competing against each other to

improve their performance. Using a random noise vector,

also called the latent code, as input, the generator’s goal is

to synthesise realistic images such that the discriminator

cannot distinguish them from the real images. In this con-

text, the images produced by the generator are referred to

as the “synthetic” or “fake” images. Through an iterative

training process, the generator and discriminator both

become stronger, with the generator learning to produce

increasingly realistic images to “fool” the discriminator,

while the discriminator also improves its ability to distin-

guish between real and fake images. The original GAN archi-

tecture,14 proposed in 2014, has been upgraded over the

years to improve its performance, its training convergence

and to expand its application capability. A few of the most

notable upgrades include that of Radford et al.15 who

replaced the multi-layer perceptron (MLP) based architec-

ture with a convolutional neural network (CNN) based one

and proposed the deep convolutional GAN (DCGAN), which

enabled the GAN to generate higher quality images. Mirza

et al.16 extended the idea to the conditional GAN (cGAN) by

incorporating an additional auxiliary input, such as a class

label (e.g. type of disease in the image), which can be used

to condition the input, thus providing control of the gener-

ated image (e.g. generate an image exhibiting particular

disease characteristics). Expanding on the conditional

approach, the discriminator in the auxiliary classifier GAN

(ACGAN)17 was given the additional task of classifying each

image (e.g. determining whether the image contains pathol-

ogy A or pathology B). For exploiting both labelled (images

with annotations) and unlabelled (images without annota-

tions) data, the semi-supervised GAN18 operates in either

supervised mode (classifying image into one of K classes) or

unsupervised mode (real or fake), with the GAN discrimina-

tor possessing K + 1 outputs (an extra fake class is added).

For example, taking the case of OCT disease classification,

the GAN may be able to learn useful information (for the

classification problem) about the images without these

images being explicitly labelled with a disease (unlabelled).

This can yield improved performance (more accurate classi-

fication) compared to using just labelled images and reduces

the need for expert labelled data.

In this paper, a comprehensive review of GAN applications

in optical coherence tomography is performed to identify

where and how GANs have been used for OCT image analysis

tasks, highlighting where possible its clinical application and

motivation. Additionally, the gaps in the existing literature

are discussed in terms of the potential for future work in the

area where GANs may be used further to enhance OCT image

analysis. This is a rapidly growing field and this review aims

to provide an overview of the current state of development

in GAN applications in OCT image analysis, and to stimulate

future research within the area.

GAN applications

Given their demonstrated benefit for a number of applications

in several areas of medical image analysis, GANs have been

increasingly adopted for OCT image analysis tasks. Their most

obvious and natural application is that of image synthesis (syn-

thetic data generation). Hence, several studies have initially

investigated the feasibility of generating realistic OCT images

using GANs.13,19-21 However, there are a range of other appli-

cations for OCT image analysis that have been explored using

GANs. These applications, which are summarised in the

Fig. 1 Example foveal-centred spectral domain (SD) OCT scan

of the posterior segment of the eye of a healthy subject, show-

ing a cross-section of the retinal and choroidal tissue (A) and its

corresponding segmented regions of interest, from which quan-

titative measures of tissue layer thickness can be derived (B).

Bar in top right of A shows the scale.

Fig. 2 Example OCT scans: three of which are generated by a GAN while one is real. We encourage the reader to discern which

image is the real one (answer can be found in the Conclusion section).
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following sections, include: anomaly detection, domain trans-

lation, super-resolution, image enhancement, de-noising,

data augmentation, shadow removal, segmentation, classifi-

cation, and prediction. Although the main motivation of this

work is to summarize and review these GAN applications, the

clinical benefit and impact of these applications is also

highlighted, where possible.

Anomaly detection

Anomaly detection refers to the task of detecting out-of-dis-

tribution (anomalous) samples (images) while anomaly local-

isation refers to the detection of anomalous regions with the

samples (i.e. specific regions within images). For example,

anomaly detection could involve the detection of OCT images

of pathology from those that are healthy, whereas anomaly

localisation could involve the localisation of pathology specific

features (e.g. subretinal fluid) within these images. One

approach for anomaly detection is by using a GAN to learn the

data distribution and then using a second step to determine

whether a given image belongs to the learnt GAN distribution

(non-anomaly) or not (anomaly). This relies on the assumption

that the GAN will only be able to generate images from within

the learnt distribution and will not be able to reliably recon-

struct anomalous samples. A handful of studies have explored

anomaly detection and localisation using GANs in retinal OCT

images22-27 which will be summarised in the following sec-

tions. An illustrative example of using a GAN applied for anom-

aly detection is depicted in Fig. 4.

AnoGAN

The AnoGAN22 is initially trained to generate patches of nor-

mal OCT images. The method then adopts an iterative process

to update a randomly initialised latent code to minimise the

difference between the corresponding generated (recon-

structed) OCT image patch (generated using the latent code)

and the original target (real image) OCT image patch. Suffi-

ciently large differences in the reconstructed image compared

to the original are used to detect and flag whether the original

image is anomalous. In this case, anomalies consisted of

images that contained retinal fluid or hyperreflective foci.

The specific spatial locations with the largest differences can

be used to identify the locations of the anomalies (anomaly

localisation). The updated version of this network, the f-Ano-

GAN23 improves this process by incorporating an additional

neural network (an encoder) to map the original target image

to a latent code which is then provided as input to the genera-

tor. The reconstruction difference between the target image

and the generated image can then be used to detect and local-

ize anomalies in the OCT images in a similar way to the Ano-

GAN. This approach works under the assumption that normal

Fig. 3 Overview of a generative adversarial network (GAN) for generating cross-sectional retinal OCT images. The generator takes

a random noise vector as input and produces a synthetic image. The discriminator is required to distinguish between the synthetic

(fake) images (created by the generator) and the real images.

Fig. 4 Overview of an example anomaly detection application in OCT images using GANs.
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OCT images will be correctly encoded and reconstructed by

the GAN whereas out-of-distribution (anomalous) images will

not, leading to a higher reconstruction error (difference

between original and reconstructed images) as these images

do not exist within the normal data distribution that was ini-

tially learnt by the GAN.

Other

Rather than calculating differences and detecting anomalies

on the image level (e.g. AnoGAN), another approach uses a

Sparse-GAN24 which instead computes the anomalies with

respect to the latent codes to detect lesions within OCT

images including those of drusen, diabetic macular oedema

(DME) and choroidal neovascularization (CNV). Wang et al.26

used a weakly-supervised (using imprecise annotations)

method based on CycleGANs28 and reconstructed the normal

anatomical structures from abnormal input images to detect

and segment lesions, including drusen, DME and CNV. Zhou

et al.27 proposed the P-Net to perform anomaly detection by

leveraging the relationship between structure (the regions

and layers) and the texture of OCT images. Here, an image

reconstruction module is proposed to 1) segment the image

and obtain the semantic area mask, 2) encode the semantic

area mask and image separately, 3) reconstruct the OCT

image based off the two encodings. The difference in the

extracted structure of the reconstructed OCT image and the

original is used for anomaly detection.

Advantages and disadvantages

Compared to other machine learning-based anomaly detection

methods, there are several advantages of GAN-based methods

for anomaly detection in OCT. Firstly, these methods require

no supervisory signal foregoing the need for any manual label-

ling compared to other deep learning approaches which may

employ supervised, semi-supervised or weakly supervised

techniques. Second, these methods are well suited to image

data and yield higher accuracy and robustness given the ability

of GANs to model complex data distributions and generate

highly realistic and diverse images. Third, GAN-based anomaly

detection methods require relatively little tuning and manual

calibration and scale well with increasing data. However, one

common drawback of GAN-based approaches for anomaly

detection is the need for significant amounts of training data

for the method to perform well. Nonetheless, GANs for anom-

aly detection have demonstrated significant potential to be

useful tools in clinical practice for identifying and highlighting

pathological regions within the retinal tissue.

Domain translation

Domain translation refers to the idea of taking a sample

(image) from one domain and transferring that to its repre-

sentation in another domain. For instance, this may involve

translating an OCT image acquired by one OCT instrument

(domain A) to resemble an image acquired by a second OCT

instrument (domain B). Similarly, this could involve translat-

ing an image acquired using one set of scanning parameters

(domain A) to resemble an image acquired using a second

set of scanning parameters (domain B). This has potential

benefits including the ability to analyse images from multi-

ple domains with an algorithm developed exclusively for one

particular domain (e.g. images from a range of OCT instru-

ments could be translated into a single ‘universal’ one for

processing purposes). With these methods an important

focus is ensuring that the ‘content’ or structure of a given

image remains unchanged while just transferring the ‘style’

of the image. This is of particular importance to ensure such

that clinically useful and reliable data can be derived. For

OCT images, the content can refer to the structure of the

tissue (i.e. critical anatomical features such as the position

of the retinal layers and pathological regions) while the style

can refer to features such as the particular level of speckle

noise as well as the contrast between the retinal layers. A

range of prior studies have investigated domain translation

between two OCT instruments29-38 which will be summarised

in the following sections. An example of applying a GAN to

domain translation in OCT images is illustrated in Fig. 5.

CycleGAN based

A handful of methods have utilised CycleGAN as the basis of

the domain translation approach. To improve retinal fluid

segmentation and photoreceptor layer segmentation, See-

bock et al.29 and Romo-Bucheli et al.30 used CycleGANs to

translate between OCT images of two devices (Zeiss Cirrus

to Heidelberg Spectralis images) taking patches of OCT

images from a cross-domain dataset consisting of age-

related macular degeneration (AMD), retinal vein occlusion

(RVO) and DME. In another set of studies, Lazaridis et al.31,32

utilised an ensemble of spatially coherent CycleGANs to con-

vert from time-domain OCT (TD-OCT) (low signal to noise

ratio) to spectral domain OCT (SD-OCT) (higher signal to

noise ratio), thus improving OCT image quality.

Other

He et al.33 achieved a similar goal to the aforementioned

CycleGAN methods but instead employed two discriminators

(one for masks and one for boundaries) to constrain and

ensure the correctness of the target OCT image anatomy.

Yang et al.34 adopted local and global discriminators and

alignment modules for cross-device OCT lesion detection

Fig. 5 Overview of an example domain translation application

in OCT images using GANs.
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including subretinal fluid (SRF), CNVand retinal pigment epi-

thelium atrophy (RPEA). Wang et al.35 used a domain adap-

tion model to improve classification accuracy for

retinopathy detection from cross-domain OCT images by

extracting invariant and discriminative characteristics

shared by the images from two different OCT instruments

(Heidelberg Spectralis and Zeiss Cirrus). Zhang et al.36

ensured that the noise patterns were similar between

domains, and used a noise adaptation approach consisting of

two discriminators, one to ensure that the noise patterns

were similar to the target domain and the other to enforce

the content (structure of the tissue and layers) to be pre-

served in the generated OCT images. Bian et al.37 used

adversarial learning (i.e. using a GAN) for unsupervised

domain adaptation with two OCT instruments (Heidelberg

Spectralis and Optovue) as part of the uncertainty-aware

domain alignment method for retinal and choroidal layer

segmentation in OCT images. Chai et al.38 incorporated a

perceptual loss39 on the output segmentation maps such

that the choroidal structure is preserved between different

OCT domains in an unsupervised manner.

Advantages and disadvantages

A clear advantage of using GAN-based approaches for

domain translation is the high level of realism and quality of

the generated images. Additionally, the rules of the trans-

formation are automatically learnt and do not need to be

handcrafted or manually specified. There is then less reli-

ance on domain-specific knowledge and understanding of

the domains in question which can allow for more accessible

and efficient development of these methods. As highlighted

above, GANs are also adept at learning the transformation

between domains without requiring labelled pairs of images.

This is a significant advantage over other methods as it

means that these models are more readily trainable and do

not require the time-consuming and often tedious collection

of additional paired data, which can also be difficult to

obtain depending on the application and type of data

required. Despite the advantages, one disadvantage of GAN-

based approaches for domain translation is the need for

large and diverse datasets for training which can be difficult

to acquire in certain situations, particularly in the medical

domain. This problem is amplified for domain translation in

particular, as sufficient data from two domains are required,

rather than just one. As discussed, GANs have been applied

in numerous studies to translate images from one domain to

another such as translating an image from the style of one

instrument to another. However, there is no study which has

investigated a single model for translating between multiple

pairs of instruments which would allow for a more unified

and efficient solution.

Super-resolution and de-noising

Super-resolution and de-noising can both be considered as

specific examples of domain translation. Super-resolution

involves taking a low-resolution image and transforming this

to its high-resolution equivalent which may provide additional

information or better visualization of the ocular tissue. With

the goal of improving the analysis of noisy OCT images, de-

noising involves the process of reducing the speckle noise

which is an inherent property of coherent imaging techniques

such as OCT. One approach for reducing speckle noise is to

perform real-time image averaging during scan acquisition

with the OCT instrument. However, this requires a prolonged

scan acquisition time which is not always feasible, particularly

in the cases of poor fixation. Hence the need for post-process-

ing methods such as a GAN to perform this task and enable

improved visualisation of the tissue structures in the image

which can prove challenging in the presence of high levels of

noise. Examples of applying GANs for super-resolution and de-

noising in OCT images are depicted in Fig. 6.

Summary

There are several existing methods for super-resolution40-46

and de-noising40,47-61 for OCT images. Common trends include

the use of a perceptual (content) loss (using a pre-trained

network) and/or a structural similarity loss for preserving

structural information within the generated OCT

images,40,41,45,47,55-59 and the adoption of PatchGAN discrimi-

nators (discriminate on the scale of patches of the images

rather than the full images).42,43,48,53,54,60 There are several

examples of both supervised (i.e. using paired data with both

the noisy and averaged image pairs)41,43,49,51,54-56,59 and unsu-

pervised (i.e. using unpaired data with only the noisy

images)42,50,52-54 approaches with just a single semi-supervised

(using both paired and unpaired data) approach published to

date.58 The following sections summarise these studies cate-

gorised into supervised and unsupervised methods.

Fig. 6 Overview of an example super-resolution application (left) and de-noising application (right) in OCT images using GANs.
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Supervised methods

For supervised methods, the target (reference) super-

resolved or de-noised OCT images are available and explic-

itly utilised. Huang et al.40 performed simultaneous de-nois-

ing and super-resolution of AMD OCT images and proposed

the SDSR-OCT method with a network based on the dense

deep back-projection network for super-resolution.62 Hao

et al.43 used a Pix2Pix GAN to reconstruct high-bit depth

OCT scans (12-bit) from low ones (3�8 bit). The OCT-GAN47

aimed to remove noise from optic nerve head images and

uses three pre-trained networks to preserve the content and

style of the OCT images, as well as to avoid blurring. Ma

et al.48 used a supervised image-to-image translation

approach for de-noising OCT images of patients with central

serous chorioretinopathy (CSC) and pathological myopia

(PM) and combined an edge loss function to increase sensi-

tivity to and better preserve edge based details (i.e. the ret-

inal layer boundaries). Chen et al.49 proposed the DN-GAN

for SD-OCT de-noising in optic nerve head images (Heidel-

berg Spectralis) using an image-to-image translation

approach (convert high noise to low noise) which used two

reconstruction losses, one in the spatial domain (as stan-

dard) and the other in the frequency domain. For both nor-

mal and pathological eyes, Guo et al.57 also utilised

CycleGAN for unpaired SD-OCT (Heidelberg Spectralis) de-

noising proposing the structure-aware noise reduction GAN

(SNR-GAN) utilising a structure-aware loss (SSIM) to aid in

preserving the different structures within the OCT images

during the de-noising process. Viedma et al.,61 utilised

CycleGANs for de-noising healthy SD-OCT images with the

goal of improving semantic segmentation performance of

the retinal layers. The SiameseGAN55 uses an additional sia-

mese twin network taking matching (identical ground truth

images) and non-matching (ground truth and generated

images) pairs to improve GAN training and produce higher-

quality de-noised SD-OCT (Bioptigen) images of both normal

and AMD patients.

Unsupervised methods

For unsupervised methods, the target OCT scans (i.e. de-

noised or super-resolved image) are not available for train-

ing while only some are available for semi-supervised meth-

ods. Das et al.42 used CycleGANs for unsupervised OCT

super-resolution to improve AMD diagnosis. For both normal

and AMD patients, Guo et al.50 performed unsupervised de-

noising of SD-OCT (Bioptigen) image patches without refer-

ence clean images, instead assuming the speckle noise dis-

tribution using ‘background’ regions from the noisy OCT

images. To de-noise retinal OCT (Heidelberg Spectralis)

images of various diseases (and different stages of disease),

Manakov et al.52 used a modified CycleGAN (HDCycleGAN) in

an unsupervised fashion with just a single discriminator such

that the discriminator can focus on the differences between

the noisy and the averaged images. Using a CycleGAN

approach with two separate encoders, Huang et al.53,54 pro-

posed that noisy SD-OCT images (from both normal and AMD

patients) can be represented in both a content space and a

noise space while the clean images are represented solely in

the content space (no noise). Wang et al.58 performed semi-

supervised de-noising of swept-source OCT (SS-OCT) images

(acquired using Topcon Atlantis) using a capsule network63

based conditional GAN again employing a structural similar-

ity loss to preserve important structural information (i.e.

the retinal layers). Here, the model is initially trained on

the paired images (supervised). Afterwards, semi-supervised

training is performed with both supervised (reconstruction,

structural similarity, and adversarial losses) and unsuper-

vised (adversarial loss only) modes which exploits the use of

unpaired data to improve de-noising performance, therefore

requiring less data to be acquired in the first place to train

the model.

Advantages and disadvantages

There is extensive work for image enhancement techniques

of OCT images using GANs, predominantly for de-noising and

super-resolution. One particular advantage of GANs for

image enhancement and de-noising is that these can be used

without paired samples. For instance, it may be difficult to

acquire paired low-resolution and high-resolution images

that are aligned precisely at the same location within the

tissue. Another advantage of using GANs compared to other

methods in these cases is the ability to synthesise images

that are highly realistic. This is a particular challenge with

other image enhancement methods in general which often

produce images which contain artifacts or overly blurred

features. Indeed, retaining the anatomical structure and

details within the images is of utmost importance such that

clinically derived metrics are unaffected by the enhance-

ment process. However, a particular ongoing challenge in

developing image enhancement methods is determining the

best metrics to use to evaluate the quality of the enhanced

images. Despite their advantages, one particular disadvan-

tage of GANs is the need for significant amounts of data to

train the models well. Without this, GANs can fail to general-

ise well to new, unseen data. This can lead to erroneous

images or even the case where the translated, enhanced

images can resemble those in the training set, rather than

resembling the input image of interest.

Data augmentation

Deep learning methods generally require sufficiently large

and diverse annotated datasets for ample performance.

However, this is often difficult, particularly in the medical

domain, due to privacy concerns and the issues posed by the

significant time and cost to collect and annotate large vol-

umes of data. One method to address this is to employ data

augmentation to artificially enhance the dataset using sim-

ple image transformations such as rotations and contrast

adjustments. Data augmentation is another application of

GANs which involves combining the synthetic data generated

by a GAN with the original real training data. In general, this

increase in data can help the training and generalization of

the model. The additional benefit here is that the GAN can

synthesise new samples from within the learnt distribution

which are beneficial for the learning task of interest. For

instance, if we consider the task of OCT retinal layer seg-

mentation with a low number of images to train the model,

a GAN can be used to effectively increase the number of
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training images (i.e. generate new ‘synthetic’ samples).

Hence, the combination of the new synthetic training data

and the real training data can potentially improve the per-

formance of a particular task compared to just using real

training data alone. GAN-based data augmentation has been

used to enhance OCT retinal segmentation,64-68 and

classification69,70 methods which are summarised in the fol-

lowing sections. Fig. 7 provides an illustrative example of an

OCT data augmentation application using GANs.

Segmentation

For segmentation, Kugelman et al.64,66 performed data aug-

mentation using conditional GANs to enhance the training

set of SD-OCT (Heidelberg Spectralis) patches for retinal and

choroidal layer segmentation in images of healthy eyes.

Mahapatra et al.65 performed data augmentation for retinal

OCT segmentation of pathological regions including intrare-

tinal fluid (IRF), SRF, and pigment epithelial detachment

(PED) in images of patients presenting with AMD and RVO.

SD-OCT scans were acquired from OCT instruments from

three different vendors: Cirrus HD-OCT, Spectralis and Top-

con. Here, they adopted a geometry-aware GAN (GeoGAN)

to generate a new image and segmentation mask by jointly

encoding an image and mask and performing hierarchical

uncertainty sampling within the generator.

Classification

For data augmentation in classification, Chen et al.69 used

conditional GANs to generate diverse images of different

modalities including for OCT images of normal patients and

those with retinal diseases (CNV, DME, drusen) to be used for

retinal disease detection. Diversity is introduced by inserting

noise to the middle layers of the generator to introduce var-

iations to the images. Given the unbalanced nature of the

data, Yoo et al.70 used a CycleGAN to generate pathological

OCT images (from healthy ones) which were then used to

augment data to train a classifier of rare retinal diseases,

such as CSC, macular telangiectasia, Stargardt disease, reti-

nitis pigmentosa, and macular hole as well as more preva-

lent retinal diseases such as DME, drusen and CNV. GANs

were trained individually for each of the diseases.

Advantages and disadvantages

There are several advantages of GANs for synthesising images

for data augmentation including the high level of quality and

diversity possible with state-of-the-art GAN methods.

Additionally, GANs automatically learn the data distribution in

question, removing the need for manually specifying the rules

for augmenting the images and can often be easily combined

with standard data augmentation techniques to improve per-

formance. However, one significant limitation of GANs for

data augmentation is that they become restricted to only gen-

erate images that are similar to the training set which can

limit their effectiveness depending on the application and

dataset. Indeed, images that do not resemble those within the

training set will be flagged as fake by the discriminator and

the generator will therefore not tend to produce those. Over-

all, there are just a few studies, however given these results

highlight a real potential for this application in OCT, further

studies are warranted in the future. Utilising synthetic data

for data augmentation has demonstrated a use for improving

the accuracy of classification and segmentation methods in

OCT particularly in cases where large and diverse labelled

datasets are difficult to obtain.

Other applications

There are several other applications of GANs to OCT image

analysis including a handful of studies investigating shadow

removal,47,71 segmentation,72-74 classification75 and predic-

tion.76 De-shadowing OCT images involves the removal of

shadow artifacts caused by the obstruction and optical scat-

tering by the retinal blood vessels. Such shadows can be prob-

lematic for image analysis due to the difficulty in visualising

the structure of the tissue in the shadowed regions. Desha-

dowGAN,71 and OCT-GAN47 both adopt supervised approaches

employing shadow removal and shadow detection networks.

The DeshadowGAN shadow detection network combines a con-

tent loss (to ensure non-shadow regions of the images are not

altered), style loss (to ensure image texture remained simi-

lar), total variation loss (to avoid checkerboard artifacts) and

shadow loss (based on the shadow detector network, to ensure

shadows had been removed). Ouyang et al.72 used conditional

GANs to perform pre-segmentation of anterior OCT images

(both corneal and limbal images) to remove speckle noise and

specular artifacts above the shallowest interface. Liu et al.73

used an image-to-image translation approach with a GAN to

perform semi-supervised segmentation of retinal layers and

fluid regions in OCT images of DME. Here, they leverage the

unlabelled data to improve performance by using a fully-con-

volutional discriminator with a confidence map output to high-

light trustworthy segmented regions in the unannotated

images which are then used to guide the training. Das et al.75

applied a semi-supervised approach for classification of

Fig. 7 Overview of an example application performing data augmentation using a GAN.
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normal OCT images and those exhibiting ocular pathologies

(AMD, DME), simultaneously training for classification (labelled

images) and in an adversarial manner (unlabelled images). For

prediction, Lee et al.76 used GANs to predict OCT scans post-

treatment for age related macular degeneration. Fig. 8 pro-

vides illustrative examples of segmentation, shadow removal

and classification for OCT images using GANs.

Conclusions and future work

This review has covered the extensive use of GANs for applica-

tions in OCT image analysis including for anomaly detection,

domain translation, super-resolution, de-noising, data aug-

mentation, segmentation, classification and prediction. In

many cases, GANs provide an improved approach compared to

other deep learning and traditional algorithms and techni-

ques. Indeed, for many of these applications GANs are

state-of-the-art in terms of their accuracy (e.g. anomaly

detection) and the quality of the output images (e.g. de-

noising). The innate ability of GAN’s to model and learn

complex data distributions is particularly suited to

image-based tasks, hence their state-of-the-art perfor-

mance and increasing use in medical image analysis

including OCT. In OCT, the power of GANs is also

highlighted by their demonstrated ability to synthesise

realistic images that can fool even experienced clini-

cians.13 Fig. 2 illustrated the difficulty in discerning real

OCT scans from fake ones generated by a GAN (in this

case only the second leftmost image is in fact real).

While some applications have received more attention

than others there are also some notable gaps. Despite the

studies in domain translation with two OCT instruments, no

studies have investigated this application in the multi-

domain setting with more than two OCT instruments. A sin-

gle model capable of translating images between a range of

different OCT instruments would allow for more unified and

streamlined approaches to OCT image analysis and would

allow algorithms developed using particular imaging modali-

ties to be compatible with other modalities. There is also

limited work performing adversarial segmentation of pos-

terior OCT images (either supervised or semi-supervised).

In the supervised setting there is the potential for

improving the segmentation accuracy of existing

approaches by incorporating a GAN loss while in the

semi-supervised setting unlabelled data can be exploited

to improve performance which is of significant interest in

medical image analysis where labelling large datasets

can be costly, time consuming or infeasible. There is also

very limited work for patch-based data augmentation for

OCT segmentation with only a single set of studies on

healthy data and similarly limited studies investigating

data augmentation using GANs for existing OCT semantic

segmentation methods. Fast and accurate layer segmen-

tation, especially in a low-data setting, is crucial in both

research and clinical practice.

Although this review has focused on OCT in a comprehen-

sive manner, there are similar GAN applications in other

areas of ophthalmic image analysis including for retinal fun-

dus photography (RF)77-83 and OCT angiography (OCTA) .84

The area of GANs is rapidly evolving and this review aims to

provide a window into their wide and increasing level of

application to optical coherence tomography. It is hoped

that this review will aid future research direction and proj-

ects in this research space. GANs have shown promise in var-

ious OCT image analysis applications and are likely to

further contribute to this field in the future, particularly

considering the rapid advances that have been observed in

the short time since GANs have been introduced. As a conse-

quence, research and clinical decision making should posi-

tively benefit from these automatic and reliable image

analysis methods.

Fig. 8 Overview of example segmentation, shadow removal, and classification applications using GANs.
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