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Abstract In recent years, the role of artificial intelligence (AI) and deep learning (DL) models

is attracting increasing global interest in the field of ophthalmology. DL models are considered

the current state-of-art among the AI technologies. In fact, DL systems have the capability to

recognize, quantify and describe pathological clinical features. Their role is currently being

investigated for the early diagnosis and management of several retinal diseases and glaucoma.

The application of DL models to fundus photographs, visual fields and optical coherence tomog-

raphy (OCT) imaging has provided promising results in the early detection of diabetic retinopathy

(DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and

glaucoma.

In this review we analyze the current evidence of AI applied to these ocular diseases, as well as

discuss the possible future developments and potential clinical implications, without neglecting

the present limitations and challenges in order to adopt AI and DL models as powerful tools in

the everyday routine clinical practice.
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Introduction

Considering the growing average age of the population and

the subsequent increased prevalence of age-related oph-

thalmic diseases, the importance of early diagnosis and

appropriate treatment of ophthalmic diseases has never

been greater.1 In fact, in spite of the several technological

advances in retinal imaging, including the advent of devel-

oped optical coherence tomography (OCT) and OCT angiog-

raphy (OCTA) devices, the interpretation and management

of retinal diseases has become largely more complex for

ophthalmologists, in virtue of the large accumulation of
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images and findings leading to a ‘big data’ challenge.2-4 In

this regard, the deep integration of artificial intelligence

(AI), machine learning (ML) and deep learning (DL) into the

ophthalmic field may improve the preexisting diagnostic sys-

tem and may help to create a more efficient health care ser-

vice in ophthalmology.5

AI is a subfield of computer science, which was developed

in the late 50s by Arthur Samuel with the aim to produce

intelligent machines.6 ML is a branch of AI, in which algo-

rithms are needed to learn the rules through a set of exam-

ples, instead of being manually encoded.7 Instead, DL is

based on a system of artificial neural networks (ANN), which

imitates the functional structure of the central nervous sys-

tem. In DL, a single deep neural network has not only the

capability of collecting data, but also of learning to both

extract features that are suitable for a given classification

problem and to subsequently categorize them.8,9 Hence, the

difference between ML and DL systems is that the former

(ML) is related to computers learning from data using algo-

rithms to perform a task without being explicitly pro-

grammed, while DL adopts a complex structure of

algorithms modeled on the human brain.

In the field of ophthalmology, DL has shown to be a useful

tool for screening and follow-up of several diseases, includ-

ing diabetic retinopathy (DR), retinopathy of prematurity

(ROP), wet-age related maculopathy (w-AMD) and glau-

coma.5 In fact, the combination between DL and telemedi-

cine may help to overcome the high costs related to

manpower and financial resources, thus improving the pro-

cess of screening and follow-up of these chronic ocular dis-

eases; in addition, AI offers the possibility to adopt efficient

algorithms able to detect and learn different clinical fea-

tures, extrapolated from a huge amount of data.10

In this review, we summarized all the clinical applications

of AI and in particular DL, especially focusing on frequent

ocular diseases including DR, w-AMD and glaucoma.

AI in diabetic retinopathy

DR is one of the leading causes of blindness in Western coun-

tries. An estimated 600 million people will have diabetes by

2040, and at least a third will develop DR.11 For this reason,

early screening for DR, with timely referral and treatment

remains the most accepted strategy to combat blindness in

these patients.12 Despite the global need for retinal screening

examinations, due to issues such as implementation, availabil-

ity of human accessors and financial sustainability, many peo-

ple still today remain undiagnosed. Nonetheless, the diagnosis

and grading of DR is allowed by the adoption of multimodal

imaging, including fundoscopy, OCT and OCT angiography for

detecting the presence of diabetic macular edema (DME) and

fluorescein angiography (FA), which is particularly useful for

describing the presence of ischemic areas and new pathologic

vessels in the posterior pole and in the retinal periphery.13

Nowadays, to improve the early diagnosis of DR, AI and in

particular teleretinal screening, has become a growing pos-

sibility to automate DR screening.14

In recent years, DL-based technologies have proved to be

equivalent to, if not superior to, the diagnostic performance

of clinical specialists. In this regard, many studies have

proven that DL systems and algorithms can accurately

identify DR.15 Abr�amoff et al. reported a sensitivity of 96.8%

and a specificity of 87% and an area under the receiver oper-

ating characteristic curve (AUC) of 0.980, for detecting

referable DR on the publicly available Messidor-2 data set.16

Gargeya and Leng et al. DL algorithm achieved a 0.97 AUC

with a sensitivity of 94% and specificity of 98%, on a 5-fold

cross-validation using their local data set and 0.94 and 0.95

AUC when tested against the Messidor- 2 and E-Ophtha data-

bases, respectively. They showed that a DL-based grading

algorithm could be adopted for screening fundus photo-

graphs in diabetic patients and could reliably refer those

cases, which needed further clinical evaluation, to an oph-

thalmologist.14 Gulshan and colleagues also developed a DL

algorithm able to detect referable diabetic retinopathy with

an AUC of 0.991 for EyePACS-1 dataset and 0.990 for Messi-

dor-2. These promising results led to multiple AI algorithms

being approved for market.17

In April 2018, the United States Food and Drug Adminis-

tration (FDA) approved the autonomous DR and diabetic

macular edema detection software (IDx-DR). IDx-DR is a

software device developed to be adopted by health care

providers for screening more than mild diabetic retinopathy

in adults with diabetes who have not been previously diag-

nosed with diabetic retinopathy. The device is indicated for

use with fundus photographs.18

Afterwards, Eye Art became the second AI-based DR in-

clinic screening platform to receive FDA approval in 2020.19

More recently, there has been a significant advancement

in smartphone-based AI. The world’s first smartphone retinal

imaging system (Remidio Fundus On Phone Non Mydriatic

(FOP NM-10) device received FDA approval as an out of clinic

device to diagnose diabetic retinopathy.20,21

Other smartphone-based AI devices include the i-Exam-

iner (Welch Allyn, Skaneateles Falls, NY), which has already

received FDA approval, as well as the Peek Retina and Volk

iNview.22 These out-of-clinic devices have the potential to

increase diabetic retinopathy screening program access and

coverage, especially in places where people may not have

access to a routine ophthalmological examination.23,24

Despite the very promising results in DL-based AI for DR

detection as determined by screening performance metrics,

there are still many practical challenges to be resolved.

Firstly, there is large concern from clinicians over the

interpretability, complexity, and time-effectiveness of AI

implementations. Secondly, different visualization methods,

such as cameras with varying resolutions, may not necessar-

ily produce the same results. Third, from a legal standpoint,

clinicians are concerned about the threat of legal liability

arising from incorrect AI analyses. Even though systems like

IDx-DR and Eye Art have already been approved by the FDA

for DR detection, the repercussions of a possible AI misdiag-

nosis are still to be assessed.25

Currently, the combination of humans and AI is able to

provide the best care, than either alone.26 In fact, while AI

is detail-oriented and fatigue resistant, humans have a

higher-level metacognition and intuition that allows them to

recognize anomalies more readily as well as be aware of the

sometimes-overlapping features of different retinal patholo-

gies, particularly in more advanced stages of the disease. A

major drawback in fact is that most of these algorithms are

excellent at detecting moderate to severe DR but worse at

grading the severity of DR, and in detecting early stages pre-
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diabetic retinopathy. Moreover, another possible limitation

is represented by the possible misdiagnosis or false negatives

when other ocular comorbidities (together with DR) are

present.27

Because most DL systems are evaluated on specific data

sets rather than on a real-world setting, big worldwide data-

sets with patients of various ethnicities should be employed

for algorithm optimization. Also, integration of different

parameters including age, duration of diabetes, serum

HbA1C percentage, blood cholesterol, blood pressure and

genetic risk information may improve diagnostic accuracy.28

Multimodal imaging has recently been investigated to

predict various retinal vascular illnesses, and while Hayreh

et al. DL model had good overall accuracy, the model pro-

vided incorrect predictions particularly for eyes with

advanced-stage disorders or coexisting retinal conditions.29

The additional complexity that is inevitable with DL algo-

rithms analysing different retinal diseases makes real world

implementation of AI challenging, somewhat making one

pathology detection-based algorithms less enticing.30

For the above-mentioned reasons, despite the promising

results and capabilities of AI, clinicians and the scientific

community remain cautiously optimistic.

AI in macular degeneration

Age-related macular degeneration (AMD) represents nowa-

days one of the major causes of central vision loss in devel-

oped countries. Worldwide, the number of people affected

by AMD is predicted to increase from 196 million in 2020 to

288 million by 2040.31 It can be classified as dry, wet, early,

or advanced based on the presence of intraretinal or subreti-

nal fluid. Both early and advanced stages can be associated

with atrophic changes on the retinal pigment epithelium.

Recently, the Classification of Atrophy Meetings (CAM) group

elaborated the definitions of geographic atrophy in AMD and

characterized its subtypes with histological correlates and

clinical validation. In combination with OCT imaging, other

imaging techniques, including fundus autofluorescence,

near-infrared reflectance, and color imaging, may provide

complementary information to describe the atrophy. In this

regard, a novel OCT-based classification has been proposed

to identify a complete outer retinal atrophy (cRORA) accord-

ing to the following criteria (1) a region of hypertransmission

of at least 250 mm in diameter, (2) a zone of attenuation or

disruption of the RPE of at least 250 mm in diameter, (3) evi-

dence of overlying photoreceptor degeneration, and (4)

absence of scrolled RPE or other signs of an RPE tear.32,33

In this regard, DL has been shown to have the ability to

detect the different stages of atrophy. In a recent study, the

first DL segmentation model was studied in relation to con-

sensus definitions for the detection, classification, and quan-

tification of geographic atrophy by OCT features. This model

reported potential for clinical utility through high perfor-

mance in a real-life external validation. Furthermore, a pre-

dictive performance was reported in comparison with that

shown by clinical experts.89

Over the last 20 years a lot of progress has been made in

terms of diagnosis and treatment modalities. Before the

advent of OCT devices, careful fundal assessment was the

only way to diagnose macular abnormalities. With

advancements being made in OCT technology, we are now

able to assess the macular region based on microscopical

changes caused by AMD.33 Standard treatment for wet

AMD remains anti-VEGF intravitreal injections. This treat-

ment leads to patients’ vision stabilization as well as some

vision improvement in some circumstances. Of particular

importance, are also the timing and the number of injec-

tions as it has proven to be relevant for the patients visual

outcome.34-42

Several studies have been published recently regarding

the use of AI in patients affected by AMD; however, to date,

there is still no consensus about its use on fundus photo-

graphs, whether associated or not with an OCTscan.5

Several studies have demonstrated AI ability to detect

findings not otherwise visible.43, Some authors have even

suggested the use of AI-based algorithms from fundus photo-

graphs as a form of screening and diagnostic tool by itself. In

this regard, a major challenge is that retinal photographs

captured from real-world clinical settings may show worse

quality in comparison with the retinal photographs carefully

curated and used specifically in the developments of DL

algorithms. Hence, to overcome these limits, some studies

developed specific DL algorithms to assess image quality,

field of view, and laterality of the eye of retinal photo-

graphs, showing an excellent performance.44

Currently, retinography represents an important diagnos-

tic tool in the evaluation of AMD in the clinic, allowing satis-

factory screening of patients. Other studies showed an

improved sensitivity in AMD diagnosis when used in concomi-

tance with OCT scan.45 In fact, such double device approach

likely increases the reliability of the results.46

Recently, it has been demonstrated the clinical utility of

AI in the decision-making process on whether to promptly

treat or postpone treatment in patients affected by wet

AMD (w-AMD). AI algorithms can indeed be considered a

helpful adjunct tool, especially for non-retina specialists in

the interpretation of OCTscans.47

In a large, retrospective study, the predictive usefulness

of quantitative imaging biomarkers, acquired automatically

from OCTscans were evaluated in 6467 eyes of 3261 patients

with wet AMD. They found that the automatic segmentation

may allow to have a rapid acquisition of quantitative and

reproducible OCT biomarkers and may help to inform treat-

ment decisions in the management of wet AMD.48

Although AI-based algorithms are rapidly evolving and are

being increasingly implemented to aid in AMD detection and

diagnosis, there are still several significant limitations. In

fact, the presence of a poor image quality due to media

opacity, long axial length, poor vision and/or patients’ gen-

eral condition may significantly affect the reliability of the

algorithms.49

In the next years one of the leading focuses of AI technol-

ogy should consist in developing more accurate algorithms

able to predict the presence of w-AMD and its evolution

and/or progression. Already different studies have described

the clinical course of AMD in patients treated with anti-VEGF

drugs.50 In addition, a novel retinal imaging technology

(Detection of Apoptosing Retinal Cells (DARC)) was recently

developed, able to detect stressed and apoptotic cells in the

living eye. This technology with an AI-aided algorithm gave

promising results in detecting AMD and there is potential for

this technology to be used as a biomarker, although further
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studies are needed to validate the findings. This system may

also help to monitor and predict the clinical course of the

contralateral, unaffected eye.51

AI in glaucoma

Glaucoma is one of the leading causes of irreversible blind-

ness, whose global prevalence in people aged 40-80 years is

estimated to be 3.5%. Moreover, it has been a predicted that

112 million people will be affected by glaucoma worldwide

by 2040.52 Glaucoma is characterized by the progressive

degeneration of the optic nerve, with loss of retinal ganglion

cells, thinning of the retinal nerve fiber layer, and progres-

sive excavation of the optic disc. Early diagnosis and an

accurate monitoring of glaucoma progression are key to pro-

vide the most accurate and targeted treatment. This is par-

ticularly important given that the visual loss caused by

glaucoma is irreversible.53

In the last decade, AI diagnostic algorithms that detect,

monitor and predict glaucoma have increased exponentially;

furthermore, several different parameters including intraoc-

ular pressure (IOP), optic disc evaluation, retinal nerve fiber

layer measurement, gonioscopy and visual field have been

evaluated as ‘markers’ to identify and monitor this disease

through DL systems.54

IOP remains the main modifiable risk factor for develop-

ing glaucoma and it is associated with its progression; thus,

developing devices that can constantly monitor IOP remains

crucial.55 In the study published by Martin et al., 24-h pro-

files of ocular volume changes were recorded using the con-

tact lens sensor (CLS) monitoring device (Sensimed

Triggerfish). The CLS parameters feature was able to dis-

criminate primary open angle glaucoma from healthy eyes

with mean ROC AUCs of 0.611.56

Several other studies have evaluated the accuracy of

other algorithms in detecting glaucoma from fundus photog-

raphy, mostly by evaluating the optic disc to cup ratio. Al-

Aswad et al. demonstrated the superiority of the Pegasus DL

system (Visulytix Ltd., London UK) that outperformed five

out of six ophthalmologists in the diagnosis of glaucomatous

optic neuropathy.57 Li et al. described a DL algorithm with a

comparable performance in detecting glaucoma from fundus

photography, with a sensitivity of 95.6% and specificity of

92%.58

In another study, Haleem et al. further optimized the

ability to detect the contour of optic disc and cup boundary

using their Region Classification Model (RCM), which provides

a more individualized system that allows to detect the pre-

cise contour of the optic disc, compared to the circular or

ellipse fitting often used in standard approaches.59

Despite the excellent performances of current algo-

rithms, major drawbacks remain when detecting glaucoma

in high myopic eyes. The peripapillary atrophy, shallow

cups, and tilting/torsion of the optic disc, features often

present in high grade myopia, were in fact the leading cause

of false negatives and positives in several studies. Poor qual-

ity images also may hinder the accuracy of the algorithm.60

OCT also proved to be valuable in the detection of glau-

comatous damage as retinal nerve fibers layer (RNFL) thick-

ness measurement remains one of the most important

features to discriminate between normal and glaucomatous

eyes.61,62

In other studies, DL algorithms were able to effectively

detect glaucomatous eyes from a single wide field swept

source OCT (SS-OCT), by analyzing the RNFL as main

parameter.63,64

In addition to the dichotomous classification (glaucoma-

tous vs healthy eyes) often used to evaluate algorithm per-

formance, detecting the progression of glaucoma has also

been of major interest.65 Various artificial neural network

and DL methods demonstrated high accuracy in distinguish-

ing glaucoma visual fields (VF) from healthy VFs as well as in

monitoring glaucoma progression66,67 Wang et al. reported

an algorithm able to recognize early stages of glaucoma and

track VF progression using archetypal analysis. The study

recognized relevant VF loss patterns and assigned a weight-

ing coefficient for each pattern loss to grade and quantify

glaucoma progression.68

Combination approaches have also been implemented to

enhance diagnosis and monitor glaucoma progression. For

instance, a study integrated both non-ophthalmologic fac-

tors (sex, age, menopause, and duration of hypertension)

and ophthalmologic factors (IOP, spherical equivalent refrac-

tive errors, vertical cup-to-disc ratio, presence of supertem-

poral and inferotemporal RNFL defect) to predict glaucoma,

providing a more personalized and holistic approach in glau-

coma detection.69

Furthermore, Kazemian et al. was able to develop a clini-

cal forecasting tool by combining tonometry and VF data that

could predict the disease trajectories at different IOPs.69

In the near future, these combination approach models

are expected to classify patients into subgroups, taking into

account both general health and ocular parameters; further-

more, these models are expected to become critical tools to

help guide clinicians to adopt the most effective strategy to

treat glaucoma. Although the performances of current algo-

rithms often outperform that of clinicians, a major chal-

lenge remains their general applicability to systems and

setting beyond the site of development. The access to a

greater pool of training images as well as inclusion of images

from patients of different ethnicities may likely increase the

accuracy of DLS. The next stage for AI in glaucoma will most

likely be the integration of the genome, lifestyle behavior,

medical history, and ophthalmological parameters into a uni-

fied algorithm.

AI in retinopathy of prematurity

Retinopathy of prematurity (ROP) is a leading cause of child-

hood blindness worldwide, affecting extremely preterm

infants.70 Low gestational age and low birth weight are the

two strongest risk factors for the development of ROP.71 The

pathology occurs in a percentage of premature births vary-

ing from 5-10% to 73% depending on the study and accounts

for 6�18% of blindness registrations.72 Early treatment has

proven to be highly beneficial, thus screening and regular

monitoring are crucial for the optimal management of the

disease.73

In 2021, participants in ICROP3 decided to refine classifica-

tion metrics (e.g. posterior zone II, notch, subcategorization

of stage, and recognition that a continuous spectrum of
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vascular abnormality exists from normal to plus disease) and

to include the definition of aggressive ROP to replace aggres-

sive-posterior ROP.74

The role of AI in ROP has significantly grown since its

application in the field, ranging from the development of

ROPtool (FocusROP), Retinal Image multiScale Analysis

(RISA), Vessel Map, Computer Assisted Image Analysis of the

Retina (CAIAR), to the most recent Imaging and Informatics

in ROP (i-ROP) and i-ROP DL.75 In detail, i-ROP presents 2

main advantages in comparison with the other image analy-

sis systems. Firstly, most previous Computer-Based Image

Analysis (CBIA) systems, which is a well-established interdis-

ciplinary research unit that primarily attends to the devel-

opment and benchmarking of algorithms for the analysis and

synthesis of cell microscopy image data, have focused on a

two-level classification (i.e., plus versus not plus), whereas

i-ROP is able to discriminate among 3 categories (i.e., plus,

preplus and normal). Secondly, previous studies used a sim-

ple threshold-based classification, instead of a Gaussian mix-

ture models-based feature representation, which is shown to

perform better than using regular statistics of image fea-

tures in classification.76 The results of i-ROP have shown to

be highly promising, since its accuracy (95%) in diagnosing

ROP was higher than 10 out of 11 individually evaluating

trained clinical experts and comparable to the whole group

of experts together (97%).77 Despite the promising results,

there were still some improvements to be done. First, i-ROP

has been trained using manually segmented images, there-

fore, it was not a fully automated procedure. Moreover, the

data set employed in the study needed to be validated

against other data sets.77 Recently, fully automated systems

employing convolutional neural networks (CNNs) have been

developed. In 2016, Worrall et al. presented the first fully

automated ROP detection system.78 Later, Brown et al. pre-

sented a CNN-based DL trained on more than 5000 images

from 8 different academic institutions, which was a fully

automated system. In this study, its accuracy was 91%

against the mean of 82% achieved by 8 experts. The i-ROP DL

algorithm outperformed not only most experts, but also all

prior CBIA systems in ROP.76

In a meta-analysis including 9 studies on DL models for

automated diagnosis of ROP, Zhang et al. reported accuracy

values based on AUC are over 0.97, which is classified as high

when above 0.9. Hence, DL models have been shown to dis-

play an important role in detecting and grading ROP with

high sensitivity, specificity, and repeatability79; however,

the systems still present some limitations, linked to the fact

that CNN are only as robust as the data on which they are

trained. Moreover, they currently classify only the plus dis-

ease, which represents only one component of the Interna-

tional Classification of Retinopathy Of Prematurity (ICROP)

system, while a fully automated ROP screening platform

should ideally classify zone, stage, and the overall disease

category as well as predict the need for treatment. None-

theless, CNN features are not fully transparent or

explainable.80

To improve these limitations, Yildiz et al. introduced i-

ROP ASSIST, which combines some of the advantages of a

CNN model for identification of the relevant vascular struc-

tures with a feature-extraction algorithm previously

developed.80,81 The system calculated the area under the

curve (AUC), which consists of a reliable measure of the

ability of a classifier to distinguish between classes and

therefore the higher is he AUC, the better is the perfor-

mance of the model at distinguishing between the classes.

In their study, the authors reported AUC values of 0.88 and

0.94 for predicting pre-plus or worse versus normal and plus

versus not-plus disease, respectively, similarly to 0.94 and

0.98 AUC, obtained by a CNN-based approach.80

Other CBIA systems have been introduced for several pur-

poses: DeepROP aims to improve the accuracy of i-ROP DL. It

is based on a larger dataset and obtained 97% as the highest

accuracy.82 Other algorithms have been proven to identify

zone 1 through RetCam images 6 and to outline the demarca-

tion line.78,83 Moreover, quantitative ROP vascular severity

score extrapolated from CBIA systems can be used to track

clinical disease progression and post-treatment regression.84

A higher score is also associated with more posterior disease,

higher disease stage, and higher extent of stage 3 disease.85

The use of CBIA systems may offer an alternative and even

more valid method to diagnose ROP, for both methodological

and economic reasons. Finally, AI has enabled the develop-

ment of a ROP severity score that correlates with ICROP dis-

ease classification and shows promise for quantitative disease

monitoring, improved risk prediction, and post-treatment

identification of treatment failure and recurrence. Being

comparable to human evaluation, CBIA systems can be useful

in saving the time of highly specialized ophthalmologists,

reducing the screening burden by up to 80%.86 Furthermore,

the instrument may be implemented in telemedicine con-

sults, in order to offer a cheap screening telemedicine tool

for diagnosing ROP in low- and middle-income countries,

where prevention still presents many flaws. The introduction

of CBIA systems in routine clinical practice is expected to

impact the outcomes of patients with ROP; further studies

are needed to provide more evidence in this regard.

Conclusions

AI-based models provided high levels of accuracy in different

ophthalmological fields; however, in spite of these achieve-

ments, there are still some challenges to be overcome. First,

most of the studies on AI and DL-based models have adopted

training data sets extrapolated from relatively homogeneous

populations.10 In fact, these data sets are subjected to sev-

eral variables, including the different quality of the images,

field of view, image magnification and ethnicities of the

patients; thus, an important issue is to diversify the features

of the data as well as enlarge the data set analyzed by AI-

models.

Second, other important issues are represented by the

relatively poor availability of data concerning rare ophthal-

mological diseases, including ocular tumors, and inherited

retinal dystrophies.5 Another important limitation is that

although many studies have provided consistent evidence in

favor of DL models in the early detection and diagnostic

capability in the ophthalmological field, often the power

calculation of independent data sets has not provided.

Hence, further studies should provide evidence on the power

calculation used, including prevalence of the disease and

type 1 and 2 errors calculation.87

Lastly, many ophthalmologists are concerned about AI

and DL being ‘black-boxes’ systems; in fact, clinical decision

S54

L. Ferro Desideri, C. Rutigliani, P. Corazza et al.



cannot be guided solely by a quantitative algorithmic perfor-

mance, but it should also consider the underlying clinical

features in order to improve physician acceptance.88

In conclusion, DL models have been proven to be the cur-

rent state-of-art in the field of AI applied to ophthalmology.

In fact, D-models have provided promising results in the

diagnostic process for several retinal diseases (DR, w-AMD

and ROP) and for glaucoma. To date, despite promising

results from DL models, some challenges persist, and further

clinical studies are needed to overcome these limitations as

well as to accurately assess the impact of AI and DL models

applied to the ophthalmological field.
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