
Journal of Optometry (2012) 5, 110---120

www.journalofoptometry.org

ORIGINAL ARTICLE

Hyperelastic  modelling of the  crystalline  lens: Accommodation

and presbyopia

Elena Lanchares a,b,∗,  Rafael Navarro c, Begoña Calvo a,b

a Aragón  Institute  of Engineering  Research  (I3A),  University  of Zaragoza,  Zaragoza,  Spain
b Centro  de Investigación  Biomédica  en  Red  en  Bioingeniería,  Biomateriales  y  Nanomedicina  (CIBER-BBN),  Spain
c ICMA,  Consejo  Superior  de  Investigaciones  Científicas  (CSIC)  and  University  of Zaragoza,  Zaragoza,  Spain

Received  20  February  2012;  accepted  25  April  2012

Available online  12  June  2012

KEYWORDS
Finite  element
method;
Biological  tissues;
Transversely  isotropic
hyperelastic
behaviour;
Lens;
Accommodation;
Presbyopia

Abstract

Purpose:  The  modification  of  the  mechanical  properties  of  the  human  crystalline  lens  with

age can  be  a  major  cause  of  presbyopia.  Since  these  properties  cannot  be measured  in  vivo,

numerical simulation  can  be  used  to  estimate  them.  We  propose  an  inverse  method  to  determine

age-dependent  change  in the  material  properties  of  the  tissues  composing  the  human  crystalline

lens.

Methods: A  finite  element  model  of  a  30-year-old  lens  in the  accommodated  state  was  devel-

oped.  The  force  necessary  to  achieve  full  accommodation  in a  30-year-old  lens  of  known

external geometry  was  computed  using  this  model.  Two  additional  numerical  models  of  the

lens corresponding  to  the  ages  of  40  and  50  years  were  then  built.  Assuming  that  the  accom-

modative force  applied  to  the  lens  remains  constant  with  age,  the material  properties  of  nucleus

and cortex  were  estimated  by  inverse  analysis.

Results:  The  zonular  force  necessary  to  reshape  the model  of  a  30-year-old  lens  from  the  accom-

modated to  the  unaccommodated  geometry  was  0.078  newton  (N).  Both  nucleus  and  cortex

became  stiffer  with  age.  The  stiffness  of  the  nucleus  increased  with  age at a  higher  rate  than

the cortex.

Conclusions:  In  agreement  with  the  classical  theory  of  Helmholtz,  on which  we  based  our  model,

our results  indicate  that  a  major  cause  of presbyopia  is  that  both  nucleus  and cortex  become

stiffer with  age;  therefore,  a  constant  value  of  the  zonular  forces  with  aging  does  not  achieve

full accommodation,  that  is,  the  accommodation  capability  decreases.
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Modelado  hiperelástico  del  cristalino:  acomodación  y presbicia

Resumen

Objetivo:  La  modificación  de las  propiedades  mecánicas  del cristalino  humano  con  la  edad

puede constituir  una  causa  principal  de  la  presbicia.  Como  dichas  propiedades  no  pueden

medirse ‘‘in  vivo’’,  se  puede  utilizar  la  simulación  numérica  para  su  cálculo.  Proponemos  un

método inverso  para  la  determinación  del  cambio  con  la  edad  de  las  propiedades  materiales  de

los tejidos  que  componen  el  cristalino  humano.

Métodos: Se desarrolló  un  modelo  de  elementos  finitos  de  cristalino  de 30  años  de edad  en

estado acomodado.  Se  calculó  la  fuerza  necesaria  para  lograr  la  acomodación  plena  en  un

cristalino de  30  años  de edad  utilizando  este  modelo.  A continuación  se  construyeron  dos  mod-

elos numéricos  adicionales  de cristalino  para  edades  de 40  y  50  años.  Suponiendo  que  la  fuerza

acomodativa  del  cristalino  permanece  constante  con  la  edad,  se  calcularon  las  propiedades  de

material del  núcleo  y  la  corteza  mediante  un  análisis  inverso.

Resultados: La  fuerza  zonular  necesaria  para  reconstruir  el  modelo  de  un  cristalino  de  30  años

de  edad,  partiendo  de la  geometría  acomodada  hasta  alcanzar  la  no  acomodada,  era de  0,078

Newton (N).  Tanto  el  núcleo  como  la  corteza  adquirieron  más rigidez  con  la  edad.  La  rigidez

del núcleo  se  incrementaba  con  la  edad  a  un  porcentaje  superior  a  la  de la  corteza.

Conclusiones: De acuerdo  con  la  teoría  clásica  de Helmholtz,  en  la  que  nos  basamos,  nuestros

resultados  indican  que  una de las  principales  causas  de la  presbicia  es  que  tanto  el  núcleo  como

la corteza  adquieren  más  rigidez  con  la  edad  y  que,  por  tanto,  el valor  constante  de  las  fuerzas

zonulares  no logra  una acomodación  plena  con  el  envejecimiento.  En  consecuencia,  se  produce

una disminución  de  la  capacidad  de acomodación.

©  2012  Spanish  General  Council  of  Optometry.  Publicado  por  Elsevier  España,  S.L.  Todos  los

derechos  reservados.

Introduction

The mechanism  of  accommodation  and  its  gradual  decline
with  age  is a  subject  of  growing  interest  due  to  the high
prevalence  of  presbyopia.  One  of  the most  significant  prob-
lems  and  current  limitations  in analyzing  accommodation
and  presbyopia  is  the  lack  of  a  single  universally  accepted
theory  on  the  subject.  Ex vivo1,2 and  in  vivo3---5 experiments
seem  to suggest  that  the Helmholtz  theory  is  probably  the
most  appropriate.  Its  main assumption  is  that  full  accommo-
dation  of  the  lens  corresponds  to its  ‘natural  shape’  that  is
maximum  axial  thickness  and  maximum  surface  curvatures,
when  no  external  forces  are applied.  The  lens  flattens  under
the  relaxation  of  the  ciliary  muscle,  then  the axial thickness
and  both  anterior  and posterior  curvatures  decrease.  As  a
result,  the  power  of  the  lens  gradually  decreases  until  the
unaccommodated  state  is  reached.6,7

In  order  to  develop  a plausible  theory  or  model  of accom-
modation  and  its  gradual  decline  with  age we  develop  a
finite  element  (FE)  model  of the  human  lens  with  a twofold
purpose.  The  first  goal  is  to  estimate  the  zonular  forces
acting  during  the  process  of  accommodation  using  a  FE
model  of  a  30-year-old  lens.  The  second  goal  is  to  estimate
the  material  properties  at any age,  knowing  the  geome-
try in  both  accommodated  and  unaccommodated  states.
To  implement  changes  for the geometry  of  the  lens  with
age  and  accommodation,  we  followed  the empirical  stud-
ies  of  Dubbelman  and  co-workers.5,8 The  capsule  shows  a
nonlinear  behaviour  over  finite  strains.9 Following  this find-
ing,  the  tissue  was  modelled  using  a non-linear  constitutive
model.

The  variation  of the capsule  thickness  with  the radial
position10 and with  age11,12 was  also  included  in the model.
We  assume  that  the  maximum  zonular  forces  obtained  in
the  first  step do not  change  substantially  with  age13 since
the  ciliary  muscle  seems  to remain  functional  throughout
the  lifespan.14,15 This  method  has  been  applied  to  obtain
the  changes  of the  material  properties  from  30-  to  40-  and
50-year-old  (y.o.)  lenses.

It  is worth  remarking  that  numerical  models  and
computer  simulation  are often  the only  way  to obtain  quanti-
tative  information  about  forces  or  material  properties  that
are  difficult  to  measure  experimentally.  Mechanical  mea-
surements  can be  taken  in  vitro,  but  they  are extremely
difficult  to  obtain  in  vivo  since  even  minimally  invasive
techniques  can  potentially  modify  the material  or  the
equilibrium  of  forces.  The  non-physiological  conditions  of
measurements  in  vitro make  the  extrapolation  of  data  to  the
in  vivo  lens  uncertain.  Here  again,  models  and simulations
are  necessary  to  evaluate  the  feasibility  of  these  extrapo-
lations.  Given  their  crucial  role,  biomechanical  models  of
the  lens  have  been  previously  developed  to  quantify  the
stress  during the  process  of  accommodation  and  to  examine
contributions  of  individual  constituents,16---22 most of  them
assuming  a  linear  elastic  behaviour  of  the tissues.

The  optimization-based  methodology  presented  in this
work  allows  estimation  of  material  constants  of  complex
constitutive  laws  frequently  used in  biomechanics.  This
technique  may  be also  used in  patient-specific  cases  for
pre-surgical  planning  as  well,  which  would  suppose  a  cru-
cial  advance  in the  customized  modelling  of  biological
tissues.
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Methods

The  method  developed  by  Burd  et  al.17 was  applied  here,
after  several  improvements  and  updates,  to  create  a  finite
element  model  of a  30  y.o.  fully  accommodated  up  to  7.5  D,
human  lens.  Our  main  assumption  is  that  the zonular  force
acting  on  the crystalline  lens  in  this fully  accommodated
state  (near  vision)  is  negligible,  according  to  Helmholtz’s
theory.  Conversely,  zonular  forces  are required  to  flatten
the  lens  in such  a  way  that  it reaches  the unaccommodated
state  (far  vision).  Numerical  simulation  allows  estimation  of
these  forces  based  on  an optimization  procedure.

A  detailed  description  of the lens  geometry  used  to
develop  the FE model  is  presented  in Appendix.  Fig.  1
depicts  the geometrical  parameters  of the  two-dimensional
model.

Fig.  2 shows  the process  to  obtain  the FE  model  of
the  crystalline  lens  from  the  parametric  geometric  model
described  in  Appendix.  Both accommodated  and  unaccom-
modated  geometries  can  be  established  for a given  age
(Fig.  2(a)).  The  3D  FE  model  depicted  in Fig.  2(b)  is  com-
posed  of  three  parts:  nucleus  (red),  cortex  (cyan)  and
capsule  (purple).

To compute  the change  of  power  (D)  with  force, or
accommodation,  here  we  assumed  a  simple  optical  model
with  a  homogeneous  equivalent  refractive  index.  In princi-
ple,  we  could  use  an adaptive  GRIN  lens  model,23 or  estimate
the  relative  contribution  of the  GRIN  structure  to  accommo-
dation  (by  extrapolating  in vitro  data  obtained  from  primate
lenses24).  However,  there  are  several  reasons  for  choosing
the  homogeneous  index  model.  One  reason  is  that  empirical
GRIN  data  are  still  scarce in humans,  but  the main  reason
is  that  our  geometrical  model  is  based on  the  Dubbelman
et  al.  empirical  data,5,8 which were  obtained  also  assum-
ing  a  homogeneous  equivalent  index  for  the  lens.  Therefore
that  choice  was  made  for  the  sake  of  simplicity  and  (what
is  more  important)  for  consistency.  The  optical  properties
of  the  lens  depend  on  both  the  inner  distribution  of  refrac-
tive  index  and  the curvatures  of  the external  and  internal
surfaces.  Thus  the  FE  model  must  faithfully  reproduce  the
in  vivo  lens  geometry.  As  a  result  of  the trade-off  between
minimum  complexity  and maximum  rigor,  different  material
behaviour  for  nucleus,  cortex  and  capsule  are considered.

To  model  the  material  behaviour  of  the three  tissues,
we  used  a quasi-incompressible  anisotropic  hyperelastic
constitutive  model.25 Quasi-incompressibility  was  assumed
because  of  the high  level of  water  of  the lens26 so the
lens  volume  does  not vary  during  accommodation.27,28 A
strain  energy  function  �  written in a  decoupled  volumetric-
isochoric  form  (� vol,  � iso) is  used29,30:

�  =  �vol + �iso =
1

D
LnJ2 +

C1

2
(̄I1 − 3)

+
C3

2C4

{exp[C4 (̄I4 − 1)
2
]  −  1},  (1)

where  1/D  is  a penalty  coefficient  to  quasi-enforce  null vol-
umetric  change,  J =  detF, being  F the deformation  gradient

tensor, Ī1 is  the  first  modified  strain  invariant  of  the  symmet-

ric  modified  right  Cauchy-Green  tensor  C, Ī4 is the square
of  the  stretch  along  the fibre  preferential  direction,  C1 is
the  Neo-Hookean  constant  and  the  parameters  C3 and  C4

characterize  the stiffness  of  the  preferential  direction  of
deformation.

The  main  difficulty  was  to  estimate  the  values  for  the
material  properties.  Due  to  the scarce  data  in the  literature
of  properties  of  nucleus  and  cortex,  the values  reported  by
Fisher11 were  used in this work.  In  contrast,  measurements
reported  in literature20,21 seem  sufficient  to  completely
characterize  the capsular  properties.  To  obtain  these  param-
eters  for  the  capsular  tissue,  we  used  the  uniaxial  tests
performed  by  Krag and Andreassen19,20 as  a  basis,  fitting  the
stress  versus  strain  curves  by  means of  least  squares  method.
These  values  are compiled  in Table  1.  The  increase  in  stiff-
ness  of  the capsular  tissue  with  age is  negligible,2,19,21 so
equal  values  were  assigned  to  the material  parameters  of
the  capsule  in  the  three  numerical  models  (aged  30,  40  and
50).  Since  the  behaviour  of the  capsular  tissue  is increasingly
stiffer  circumferentially  towards  the  equator,21 a  preferen-
tial  circumferential  direction  of  deformation  was  considered
and  introduced  by Ī4 (Fig.  2(c)).

The  fibres  in  the nucleus  are  not  clearly  arranged,  there-
fore  the nucleus  is  considered  as  an  isotropic  material  and
modelled  by  a  Neo-Hookean  model.  In spite  of  the clear
arrangement  of  the fibres  in the  cortex31 we  modelled  this
tissue  as  an isotropic  material  due to  the  lack  of data  for
the specific  material  parameters  of  these  fibres.

To  establish the boundary  conditions,  some assumptions
were  made.  First  of  all,  the Helmholtz  theory  was  followed
assuming  that  the force  delivered  by the ciliary  muscle
through  the  zonular  fibres  flattens  the  lens  until  the unac-
commodated  state  configuration  is reached.  The  rigid  body
motion  of the  model  is  not  relevant  for  the purpose  of  our
work,  which  is  focused  on  the deformation  of  the crystalline
lens.  Thus,  the  movement  of  the lens  along  the axial direc-
tion  was  neglected.

The nodes  placed  along  the optical  axis  were  only  allowed
to  move  along this direction.  The  nodes  located  in the equa-
tor  are not  allowed  to  move  along  the  optical  axis.  To
achieve  an equilibrium  solution,  the sum  of  axial  compo-
nents  of  the  zonular  forces  must  be zero.

Although  the zonular  fibres  themselves  were  not  mod-
elled,  an assumption  has  to  be made  about  the  equatorial
region  where  they are attached  to the lens.  In  gen-
eral,  the  insertion  region  of  the zonular  fibres  is divided
into  three  ring bands:  anterior,  central  (equatorial)  and
posterior32,33 provides  data  concerning  the  location  of the
insertion  regions:  anterior  1.5  mm and  posterior  1.25  mm
from  the  equator.  The  width  of the anterior  and  the  poste-
rior  regions  (0.4  mm  and  0.5  mm,  respectively)  was  obtained
from  Ludwig.34 Because  the  width  of the  central  region
is  unknown,  the same  width as for the posterior  insertion
region  of  zonular  fibres  was  used  (0.5 mm).  Fig.  3  shows  the
directions  of  application  of the ciliary  forces  and  the  loca-
tion  of  the bands  where  ciliary processes  are inserted  in the
capsule.  The  values  of  the distances  of these bands from  the
equator  of  the lens  are  shown  in  Table  2.  The  nodes  of the FE
mesh  situated  in these  bands represent  each fibre  insertion
hence  the  points  of  application  of the  zonular  forces.

A set  of  zonular  forces  was  applied  on  the FE  model  of  the
lens  and then  the  unaccommodated  configuration  was  com-
puted.  To  determine  the zonular  forces  acting  on  the human
crystalline  lens  we  considered  four parameters:  total  thick-
ness  TT, anterior  curvature  Cant,  anterior  conic  constant  Qant
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Table  1  Values  of the material  parameters  of  nucleus,  cortex  and  capsule  at the  age  of  30.

Parameters  C1 (MPa)  D  (MPa−1)  C3 (MPa)  C4

Nucleus11 9.3667  ×  10−5 214.96 0.0  0.0

Cortex11 5.8295  ×  10−4 34.54 0.0  0.0

Capsule19,20 0.2160  0.2835  0.0339  9.7406

Xant
0.4mm

0.5mm

0.5mm

Yant

Ypos

Xpos

ant

pos

Muscle

Figure  3  Directions  of  application  of  the  ciliary  forces  and

the location  of  the  bands  where  zonular  fibres  are  inserted  in

the capsule.

and  posterior  curvature  Cpos. The  corresponding  squared  rel-
ative  errors  (ECant,  EKant, ECpos and  ETT) are summed  to  build
the  cost  function  W35:

W  = ECant +
1

10
EQant +  ECpos +  ETT . (2)

The  cost  function  minimization  gave  the optimal  set  of
forces.

Then,  two  models  of  the  lens  at the  ages  of  40  and
50  years  were developed,  following  the  same  process  as
described  previously.  The  zonular  forces  obtained  previously
were  now  an  input  to  the process,  and  further  simulations
were  carried  out.  Now,  the parameters  of  the material  prop-
erties  varied  and the  cost  function  (2)  corresponding  to  each
model  was  minimized.

Results

Fig.  4  shows  the unaccommodated  and  accommodated
geometries  of  the 30-year  FE  model  after  application  of
zonular  forces.  When  the cost  function  reaches  a  min-
imum  (0.015  and  0.020  for  the 40  and  50-year  model,
respectively),  the unaccommodated  geometries  match  the
previously  established  anterior  and  posterior  curvatures,
corresponding  to  the  fully  unaccommodated  state  of  the
lens.  Fig.  5(a)  and  (b) shows  the conicoids  (green  curves)

Table  2  Distances  of  insertion  bands  from  the  equator

(Xant, Yant, Xpos and  Ypos in  Fig.  3).32---34 The  right  column

depicts the  width  of  the  band.

Band  X  (mm)  Y  (mm)  Width  (mm)

Anterior  1.50  1.04  0.4

Posterior 1.25  1.29  0.5

Equatorial  0.00  0.00  0.5

Figure  4 Unaccommodated  and  accommodated  geometries

of the  30-year  FE  model  after  application  of  zonular  forces.

that  fit the nodes of  the anterior  and posterior  surface  in
the unaccommodated  configuration  superimposed  on  the
reference  curves  (dashed  curves)  which  are the  previously
described  anterior  and posterior  surfaces  for  the 30-year
model,  in the fully  unaccommodated  state.  A  central  area  of
radius  2.5  mm  and  2 mm for  the anterior  and  posterior  parts,
respectively,  was  used  to  compare  the  reference  surface
with  that  obtained  by  numerical  simulation.  The  posterior
curvature  of  the lens  matches  the reference  curve,  and  the
agreement  of  the anterior  curvatures  is  reasonably  good  in
a  central  area  of  radius  2  mm.

Fig.  6(a)  shows  the  maximum  principal  strain  distribution
of  the capsule  in the unaccommodated  state  of  the 30-year
FE  model.  Since  the higher  logarithmic  strain  (LE)  in  the  cap-
sule  is 0.0703,  the  strain  is  �principal = eLE =  e0.0703 =  1.0728  i.e.

7.28%.  This  value  supports  the  initial  assumption  of using
a hyperelastic  constitutive  model  for  the  crystalline  lens
tissues,  since  they  show  a  finite  strain  behaviour.21

Fig.  6(b)  shows  the  maximum  principal  stress  distribu-
tion  in  the capsule  corresponding  to the  unaccommodated
state  of  the  30-year  numerical  model.  The  maximum  value
corresponds  to  the posterior  pole  area,  where  the capsular
tissue  is  thinner.  The  stress  decreases  towards  the equator
(160.3---82.84  kilopascal  (kPa))  corresponding  to  increases  in
thickness.

Fig.  6(c)  shows  the  maximum  principal  stress  distribution
in cortex  and  nucleus  corresponding  to  the unaccommo-
dated  geometry  of  the 30-year  FE model.  The  maximum
value  (0.5526  kPa)  corresponds  to the red  spot  at the loca-
tion  of  the zonular  insertion  band,  where  the  forces  act.  The
maximum  principal  stress  in the  optical  area  of  the cortex  is
a  tensile  stress  of  about  0.2  kPa,  meanwhile  a  compressive
stress  of 0.25  kPa  turns  up  in  the nuclear  tissue.  These  val-
ues  are 2---3  orders  of  magnitude  lower  than  those  obtained
for  the capsule.

The maximum  principal  stress distribution  resulting  from
numerical  simulation  for  the 40-  and  50-year  FE  models  was
similar  to  that  of  the  30-year  model.  The  maximum  values
were  96  and 61.97  kPa,  respectively,  for  the  capsule,  and
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configuration  superimposed  on  the  reference  curves  (dashed  curves).

1.364  and  2.050  kPa  for nucleus  and cortex.  The  observed
tendency  of  increasing  stress  in the interior  of  the  lens  and
decreasing  stress  in the capsule  with  age during  the  process
of  accommodation  is  due  to  increases  in capsular  thickness
with  age.

The  change  in thickness  of anterior  and posterior  cortex
(ACT,  PCT)  and  nucleus  (NT)  caused  by  the  process  of  accom-
modation  measured  by  Dubbelman  et al.8 is  compared  to
the  values  obtained  by  numerical  simulation  (Table  3).  The
FE  simulation  reproduces  the  empirical  observation  that  the
variation  of the total  thickness  of the lens  with  the  accom-
modation  is mainly  due  to  the  change  in  thickness  of  the
nucleus:  0.3  mm changes  NT, TT  changes  0.33  mm,  according
to  Dubbelman,  and  0.234  mm versus  0.387  mm,  according
to  the  numerical  simulation.  In both  cases,  Dubbelman
and  FE  simulation,  the  values  of  the  variation  of  the
nucleus  and cortex  thicknesses  were  of  the  same  order
of  magnitude.  There  is  a small  discrepancy  between  the
experimental  results  by  Dubbelmann,  where  the thickness

of the cortex  was  found  to be nearly constant,  and  the
FE  simulation  that  predicts  a  non-negligible  change  with
accommodation.

The  lens  radius  Rlens increases  from  7.5  diopters  (D)  to
0  D. For the  30-year  FE model,  the simulation  provided  an
increment  of  0.32  mm  (from  4.56  mm  to  4.88  mm),  which
is  somewhat  higher  than  the 0.28  mm measured  by  Strenk
et  al.36 The  change  in Rlens obtained  for  40 and  50  years  old
were  0.24  mm  and 0.17  mm,  respectively.

Fig.  7(b)  shows a  test of  consistency  between  the empir-
ical  change  of lens  radii  with  accommodation  (Dubbelman
et al.8)  and  our  finite  element  model  predictions  for  the
age  of  30. Dubbelman  and  co-authors  provided  the expres-
sions  of  the lens  radii  R  as  a function  (f) of  accommodation
A(R  =  f(A)).  On  the other  hand our model  predicts  the  change
of  these radii  as  a  function of applied  force  F(R  = g(F))
where  g is a  linear  function  (see  Fig.  7(a)).  One  simple
and  direct  way  to cross  check  these two  models  is  to  com-
bine  both  functions  (models)  f  and g.  If both  models  are
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Figure  6  Maximum  principal  strain distribution  of  the  capsule  with  the  FE  model  (a),  numerical  model  (b)  and  cortex  and  nucleus

(c) in  the  unaccommodated  state  of  the  30-year  FE  model.
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Table  3  Values  at  the  age  of  30  of  anterior  cortex  (ACT),  nucleus  (NT),  posterior  cortex  (PCT)  and  cortex  (CT),  total  thickness

of the  lens  (TT)  and  lens  radius  (Rlens)  for  the  7.5  D and 0 D states,  and  increment  (�)  caused  by  accommodation  comparing

values obtained  by  FE  simulation  to  those  by  Dubbelman  et  al.46

7.5  D 0  D (FEM)  0  D (Dubbelman)  �  (FEM)  �  (Dubbeman)

ACT  (mm)  0.89  0.804  0.87  0.086  0.02

NT (mm)  2.49  2.256  2.19  0.234  0.30

PCT (mm)  0.58  0.513  0.57  0.067  0.01

CT (mm)  1.47  1.317  1.44  0.153  0.03

TT (mm) 3.96  3.573  3.63  0.387  0.33

Rlens (mm)  4.56  4.88  4.84  0.32  0.28

consistent  they  must  correspond  to  the same  value  of the
radius  so  that  f  = R  =  g,  or  simply  f  =  g.  This  provides  a  new
expression  with  only two  variables,  accommodation  (A)  and
force  (F).  Then  we  solve  the  equation  for  A (twice,  for

both  anterior  and  posterior  radii) to  obtain  the curves  of
Fig.  7(b).  In case  when both  models  were  totally  consistent
(compatible),  we  should expect  both  curves  to  be  identical
(red  line  in Fig.  7(b)).  The  difference  observed  between  the
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Figure  7  Consistency  between  the  empirical  change  of lens  radii  with  accommodation.



Hyperelastic  modelling  of  the crystalline  lens  117

two  curves  is  a  measure  of  the discrepancy  between  empir-
ical  data  and model predictions.  The  physical  meaning  of
Fig.  7 is  that  compared  to our FE simulation,  in the Dubbel-
man’s  expressions  the posterior  radius  changes  too  much
(and  the  anterior  too  little)  with  ciliary  force.  The  dis-
crepancy  is of  the  order  of 1 D in a range  of  8  D  (12.5%).
Conversely,  our  model  predicts  a  smaller  change  of  the
posterior  radius  (and  greater  for  the  anterior  radius)  with
accommodation  than  that  observed  empirically.

The  empirical  expressions  of  both  radii  Rant,  Rpos as
a  function  of  the  applied  force  F for  the  30  y.o.  model
of  the  lens are Rant(F)  =  44.72F + 6.71  (R2 =  0.9983)  and
Rpos(F)  = 11.21F + 4.71  (R2 = 0.9903).  The  same  analy-
sis  was  performed  for  the  ages  of  40  and  50  years
old  (see  Fig.  7(c)---(f))  and  the corresponding  lin-
ear  regressions  were  obtained:  for  the 40-year  FE
model,  Rant(F)  = 31.813F  +  7.3206  (R2 = 0.9925)  and
Rpos(F) = 11.254F  +  4.8426  (R2 =  0.9936);  for the 50-year
FE  model,  Rant(F) =  20.459F  + 8.1851  (R2 =  0.9964)  and
Rpos(F)  = 7.3749F  +  5.0518  (R2 =  0.999).

C1 is  a  material  parameter  that  indicates  the stiffness,
and  the  estimated  values  of  this  parameter  for  the ages  of
40  and  50  years  are shown  in Table  4.  Both  cortex  and nucleus
become  stiffer  with  age.  The  cortex  at the age  of  40  is  1.12-
fold  stiffer  than  at the age  of  30,  and  at 50  y.o.  becomes
1.03-fold  stiffer  than  at 40.  The  nucleus  at  40  y.o.  is  1.40-
fold  stiffer  than  at 30 y.o.,  and  at 50  y.o.  is  1.64-fold  stiffer
than  at  40.

Discussion

In  this  paper  a parametric  3D  FE model  of  the  human  crys-
talline  lens  was  developed  to  estimate  both  the zonular
forces  acting  during  the process  of  disaccommodation  and
the  change  of  the material  properties  of  the  lens  with  aging.
A  non-linear  behaviour  was  considered  for the  three  tis-
sues  and  the  capsular  tissue  was  modelled  as  a  non-isotropic
material.

Both the  geometry  and the  method  are  based on  pre-
vious  studies.13,17,37 As  proposed  by  some  authors17,23 the
equatorial  surface  of  the lens  is  non-planar,  and  so it  was
modelled.  To  model  the outermost  geometry  of the  lens,  a
more  compact  expression  could  have  been  used  to  describe
the  lens  geometry,  for  instance  that  proposed  by Kasprzak,28

which  consists  of a  single  continuous  function capable  of
reproducing  the whole  lens  surface.  We developed  a para-
metric  geometry,  compiling  the  work  of  several  authors,  to
make  it  dependent  on  age  and state  of accommodation.

Most  finite  element  models  in the literature  assumed
axial  symmetry9,16,17 and  the tissues  were  modelled  as  lin-
ear  elastic  materials.13,16,17 We  created  a  three-dimensional
model  which  allows  us  to introduce  the  anisotropy  of
the  capsular  tissue  and  a  hyperelastic  quasiincompressible
model  was  used16,28,38 which  is  justified  by  the  empirical
observation  of  a  nonlinear  pseudoelastic  behaviour  over
finite  strains.18,20,21,39

An  analysis  of  the  position  of  the  attachment  of  the zonu-
lar  fibres  to  the lens  was  also  performed.  Bands  of  insertion
wider  than  those  used in the presented  work  were  consid-
ered.  Each  one  joined  the one placed  next,  forming  a single
continuous  band  at  the equator.  The  outcomes  of  numerical

simulation  showed  a slight  variation  of  the  total  error  with
respect  to the  presented  work.

The  forces  required  to  achieve  the change  of  shape  of
the  model  from  the  accommodated  to  the unaccommo-
dated  state  is  0.078 N, about  five  times  greater  than  the
0.015  N  estimated  by  Fisher.40 However,  our  result  agrees
with  previous  findings  by  finite  element  simulation  of  the
accommodative  process.  Burd  et  al.17 obtained  values
of  zonular  forces  ranging  from  0.08  N  to 0.1 N;  Hermans
et  al.35 obtained  a value  of  0.081  N.  These  values  are
slightly  greater  than  ours,  but  these  authors  did  not  include
the  variation  of  the capsular  thickness  with  the radial  posi-
tion,  considering  this  value  as  a  constant  for  anterior  and
posterior  surface  of  the  lens  and therefore  being  less  stiff.

The  estimated  value  of  the  zonular  force  is  consistent
with  previous  empirical  in vitro measurements  for  the whole
lens41 or  for  the  lens  capsule2,39 who  obtained  values  of  the
same  order  of  magnitude.

We  assumed  that  the zonular  forces  remain  constant  with
age.  Some  authors  support  this assumption13 since  the  cil-
iary  muscle  seems  to  remain  functional  with  age.  Presbyopia
can  be  attributed,  besides increase  in lens  stiffness,  to  con-
tinually  decreasing  zonular  tension  secondary  to  life-long
increases  in  lens  thickness,  making  accommodative  ciliary
muscle  movement  irrelevant  (modified  geometric  theory,
Strenk  et  al.42). Nevertheless,  the age-related  changes  in
zonular  forces  are not  yet  known  and  the  assumption  of  their
preservation  is  not  widely  accepted.  In order  to evaluate  the
effect  of  varying  the zonular  forces,  1.5-fold  the  estimated
value  was  applied  in the model.  A linear  increase  of  the
anterior  and posterior  radii  was  observed  (Fig.  7(a)),  lead-
ing to  negative  accommodation  at  values  of  zonular  force
higher  than  0.078  N. Nevertheless,  this  effect  slows  down
at greater  values  of  the force,  which  is  also  observed  at
the  ages  of  40  and  50  years  old. Perhaps  increasing  zonular
forces,  causing  negative  accommodation,  could  help  to  com-
pensate  the  ‘‘lens paradox’’3 (decrease  of  dioptric  power  of
the  eye  despite  the increase  of  lens  surface  curvatures  with
age).

The  discrepancy  found  in the predicted  disaccommoda-
tion  caused  by  increasing  force  between  the anterior  and
posterior  surfaces  (Fig.  7(b))  is  in part  a  consequence  of
the  outcome  of the  cost  function.  It also  can be due  to
the  mismatch  between  the  rates  of  change  of anterior  and
posterior  curvatures.  Therefore,  to  obtain  a  finer  tuning
this  residual  inconsistency  must  be minimized  to  achieve
the  coincidence  of both  curves.  If we  trust  our  FE  simula-
tion,  then  the parameters  of  the  experimental  data  should
be  modified:  increasing  the  rate  of  change  of  the anterior
curvature  and  conversely  decreasing  the rate  of  change  of
the  posterior  curvature  with  accommodation.  The  opposite
strategy  would be to  modify  other  parameters  of the model.
Since  the  resultant  force  acts  radially,  any modification  of
the  FE  model  would  require  modification  of  the geometry
(no  better  agreement  can be  obtained  by modification  of
the  material  properties)  but  in  all  cases  some modification
of  the geometric  parameters  should  be needed  to  obtain  a
perfect  match  between  model  and data.

According  to the images  obtained  by  a Scheimpflug  cam-
era  of  the  inner  structure  of  the  lens8 the thickness  of  the
cortex  appears  to  remain  nearly  constant  during  the pro-
cess  of  accommodation,  the  variation  of  the  total  thickness
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Table  4  Material  properties  obtained  for  nucleus  and  cortex  corresponding  to  40  and  50-year  FE  models,  compared  to  the

values of  the  30-year  FE  model.  C1 in  MPa  and  D  in MPa−1.

Parameters  Cortex  C1 Cortex  D  Nucleus  C1 Nucleus  D

30  y.o.  0.58295  ×  10−3 34.54  0.93667  × 10−4 214.96

40 y.o.  1.3423  × 10−3 15.00  2.8523  ×  10−4 70.59

50 y.o.  2.5168  × 10−3 8.00  6.3255  ×  10−4 31.83

being  mainly  due  to  the  change  in the nucleus  thickness.
This  effect  is  also  obtained  by the  FE simulation.  Neverthe-
less,  Dubbelman  et al.8 proposed  that  ACT  and PCT  remain
constant  during  accommodation,  which was  not  observed  in
our  simulation.  The  values  of  the  variation  of  the  nucleus
and  cortex  thicknesses  given  by  numerical  simulation  and
measured  by  Dubbelman  et  al.8 were  of  the same  order  of
magnitude.

The  increment  of  Rlens obtained  by  the simulation,  for  the
30-year  FE  model,  was  of  0.32  mm,  versus  the  0.28  mm  esti-
mated  by  Strenk  et al.36 The  lens  equatorial  radius  was  not
included  as a  restriction  in the cost  function,  thus  this could
have  caused  the  mismatch  between  the  two  values.  This
minor  discrepancy  could  be  related  with  the small volume
change  allowed  in  the FE  simulation,  but  again  the uncer-
tainty  in  the  experimental  estimation  could  also  explain  it.
The  changes  in Rlens for  40  and  50  years  old were  0.24  mm
and  0.17  mm,  respectively.

As  was expected11,37 our  results  showed an increase  in
stiffness  with  age  for both  nucleus  and  cortex.  The  stiffness
of  the  nucleus  increased  with  age  at  a higher  rate  than  the
cortex,  which  is  in  agreement  with  other  works.43,44 In spite
of  the  assumptions  made  (zonular  forces  constant  with  age,
no  motion  along the optical  axis during  the  accommodative
process,  etc.), our  results  support  classic  theories  that  the
increasing  stiffness  of the tissues  of  the  lens  can be a  major
cause  of  presbyopia.

The  methodology  developed  so far  is  intended  to be  a
useful  tool  to  estimate  parameters  that are  non-measurable
in  vivo, such  as  the  zonular  forces  and the material  proper-
ties  of  the  tissues  at  a  given  age.  Moreover,  in this  way  we
hope  it  could  be  applied  not  only to  study  presbyopia  but
also  to  find  ways  to  restore  accommodation.  In  the last  few
years,  with  the  development  of cataract  surgery  techniques,
intraocular  lenses  have  been  continuously  improved.  Numer-
ical  simulation  of lens  and accommodation  can help  in design
of  intraocular  lenses.  The  optics  of  the intraocular  lens  could
be  determined  for  a  given  case  if a patient  specific  numeri-
cal  model  is  developed.  Then,  the estimation  of  parameters
such  as  the  zonular  forces  or  the antero-posterior  displace-
ment  of  the  lens  will  help  in determining  the  best optic
design  of  an accommodative  lens  for  that  patient.
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Appendix.

(i) External  Geometry

Fig.  1 shows  a  schematic  diagram  of  the  basic  lens  geometry
assumed  here.  The  way  to  build  the  lens  geometry  is  based
on  the  method  proposed  by.13 The  main  difference  is  that
here  the central  surface  dividing  the anterior  and  posterior
part  of  the lens  is a conicoid  surface  instead  of  the equatorial
plane.  As  a  result, the equators  of  nucleus  and  cortex  lie
on  different  planes  in  agreement  with  recent  experimental
findings.45

Another  important  difference  is that  the  external  lens
surfaces  are  divided  into  three  parts  in order  to  join  the
two  curves,  corresponding  to  the  central46 and  equatorial37

edges,  based  on  experimental  data.  The  intermediate  part
is  computed  to  guarantee  continuity  in the  surface  and  in
its  first  derivative.

The  central  part of  the  anterior  and  posterior  surfaces  of
the lens  (red  in Fig.  1)  are conicoid  surfaces  with  revolution
symmetry  (see  Eq. (A1))  where  C  is  the  curvature  and  Q  is
the conic  constant.

z1 = z0 +
Cx2

1 +
√

1  −  (Q +  1)C2x2
(A1)

According  to,37 the equatorial  edge  z3 (green  curve in
Fig.  1)  is  assumed  to  be  an arc  of  circumference  with  radius
re (Eq.  (A2)). It connects  the anterior  and  posterior  surfaces
and  is  positioned  at the  equator  at  the previously  established
lens  radius  Rlens.

z3 =

√

r2
e −  (x  −  Rlens + re)2 (A2)

Following,37 the ratio  between  re and  Rlens is  constant
(re/Rlens =  0.1208),  as  well  as  the values  of  the anterior  and
posterior  angles  which  determine  the length  of the  equato-
rial  arc  (�ant =  63◦,  �pos = 37◦).

The  central  part  of  the lens  z1 (red  curves)  and  the equa-
torial  edge  z3 (green  curves)  must  be connected  through
an intermediate  surface  (blue  in  Fig.  1)  to  complete  the
outer  geometry  of  the  lens.  The  blue  curves,  z2,  are  conic
surfaces,  designed  to  guarantee  continuity  with  the  red
and  green  curves.  The  connecting  points  are named  P1,
between  the  red  and  blue  curves,  and  P2,  between  the blue
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Table  5  Geometrical  parameters  of  the  lens  as  a  function

of age  A  (y.o.)  and  vergence  of  the  stimulus  S in  diopters

(D).3,5,8,42,47

Regression  function

Cant (mm−1) (12.7  −  0.058A)−1 + 0.0077S

Qant −4  −  0.5S

Cpos (mm−1) (5.90  − 0.013A)−1 +  0.0043S

Qpos −3

ACT (mm) 0.51(±0.04)  + 0.0116(±0.007)A  + 0.0040S

NT (mm)  2.11(±0.04)  + 0.0030(±0.001)A  + 0.0400S

PCT (mm)  0.33(±0.04)  + 0.0082(±0.007)A  + 0.0006S

TT (mm)  2.95  +  0.0228A  + 0.045S

Rnucleus (mm)  3.05  +  (0.5542  −  0.0091A)(1  −  S/(15  − 0.25  S))

Rlens (mm)  0.0069(±0.001)A  + 4.35(±0.07)

�Rlens (mm)  0.5542  −  0.0091A

and  green  curves.  Following,13 P1 is set at x  =  2.5  mm for
the  anterior  part  and  x =  2  mm  for the  posterior  surface.  As
previously  explained,  P2 is  fixed  by �ant and  �pos, using  the
cited  values.37 The  computed  values  for  C2,ant and  Q2,ant were
0.1021  mm−1 and  1.1302,  respectively.  The  expressions  for
z2,ant,  Q2,ant and  C2,ant can  be  obtained  similarly  to  for  z1,ant,
Q1,ant and  C1,ant.  The  computed  values  for  C2,pos and  Q2,pos

were  0.0036  mm−1 and  53.5284,  respectively.
Our  model  introduces  an improvement  with  respect  to

the  geometry  proposed  by  Hermans.  The  interface  between
the  anterior  and  posterior  halves  of  the  lens,  instead  being
an  equatorial  plane,  is  modelled  as  a  conicoid  surface  of
revolution.45 We  used  the  conicoid  proposed  by  Navarro
et  al.23 From  this  curve  a quadratic  surface  of  revolution
is  obtained.

The interfaces  between  nucleus  and cortex,  both  anterior
and  posterior,  are  assumed  to  be  concentric  with  the  outer
surfaces  of  the cortex.  No  equatorial  circumference  is  used
for  the  equator  of  the  nucleus.  The  total  thickness  (TT) of
the  lens  is  described  by  the anterior  half  lens  thickness  (tant)
and  the  posterior  half  lens  thickness  (tpos).  Fig.  1  shows  these
parameters  and  also  the anterior  cortex  thickness  (ACT),
posterior  cortex  thickness  (PCT) and  nucleus  thickness  (NT)
as  the  sum  of  anterior  nucleus  thickness  (ANT) and  posterior
nucleus  thickness  (PNT).

Rosen  et  al.47 found  a nearly  constant  ratio  of  0.7
between  anterior  and  posterior  thicknesses,  measured  as
the  distances  from  the anterior  and  posterior  poles  to  the
equator.  This  factor,  along  with  the expression  for  the
lens  thicknesses  TT  in Table  5 was  used here  to  compute
the  thickness  of  nucleus  and  cortex  for  different  ages  and
accommodations.

(ii)  Age  and accommodation

The  model  described  above  is  a parametric  general  model
of  the  lens  (nucleus  and  cortex)  geometry.  To  obtain  the
shape  of  the lens  at a  given  age and  at an  accommodative
state,  we  need  to  particularize  the values  of  all  parameters
involved.  For  the external  geometry,  we  used  the  empirical
expressions  obtained  by Dubbelman  et al.5 (Table  5), where
A  is  the  age in  years  and  S  is  the  vergence  of  the stimulus.

For the amplitude  of  accommodation  (AA)  we  used  an
empirical  law48 which  gives  the  maximum  accommodation
response  in dioptres  as  a  function  of  age (A).

AA  =  15  −  0.25A  (A3)

This  expression  states  that the  amplitude  of  accommo-
dation  declines  by  0.25  D  per  year,  predicting  an amplitude
of  0  D  for  60  y.o.  lenses.  This  expression  has  been  further
verified  by  other  authors.1

According  to  the Helmholtz  theory,  the in  vitro  force-
free  lens  geometry  corresponds  to  the  fully  accommodated
state.  We  used an empirical  linear  equation  obtained  by
Rosen  et  al.47 (see  Table  5)  to  compute  Rlens at  each  age
of  interest.  To  estimate  the equatorial  diameter  of  the lens
in  the  unaccommodated  state,  we  used  an expression  for
the �Rlens

36 (see  Table  5).

(iii)  Geometry  of the  nucleus

To  design  the geometry  of  the  nucleus  we  used  in vivo  exper-
imental  data  obtained  by  Dubbelman  et  al.8 They  observed
that  the  anterior  and  posterior  thicknesses  of  the cortex  do
not  change  appreciably  with  accommodation.  Moreover,  the
growth  rate  of  the  cortex  with  aging  is  greater  than  that
of  the nucleus,  which  is  consistent  with  the fact  that  new
fibres  are continuously  formed  in  the  outermost  layer  of the
cortex.  The  expressions  for  ACT,  NT,  PCT  and  TT  at  a given
age  and  state  of  accommodation  are  shown  in Table  5.

The  equatorial  radius  of  the nucleus  was  estimated  by
the  expression  proposed  by  Brown3 for  Rnucleus at  one  age and
state  of  accommodation  (see  Table  5).  Since the anterior  and
posterior  cortex---nucleus  interface  and  the  outer  surface  of
the  lens  are  coaxial  in  the optical  zone,  the  geometry  of the
nucleus  is  completed  with  two  anterior  and  posterior  curves
which  extend  the  central  parts  to  the  point  of  the  medium
surface  situated  at  Rnucleus from  the  optical  axis  (see  Fig.  1).

(iv)  Thickness  of the  capsule

The  capsular  thickness  varies  with  the radial  position  and
grows  with  age.49 We followed  the equations  proposed  by
Burd  et al.17 based  on  Fisher’s  data49 to estimate  the  cap-
sular  thickness  as  a function  of  the radial  position,  for
different  ages.  The  anterior  capsular  thickness  is  greater
than  the posterior.  For  the 30-year  numerical  model,  the
capsular  thickness  was  assigned  a value  of  10.87  �m  at
the  anterior  pole,  increasing  towards  the  equator  (20 �m),
and  then  decreasing  towards  the  posterior  pole,  up  to  a
value  of 3.159  �m. For the  40-year  numerical  model,  the
values  for the anterior  and  posterior  pole  were  13.37  �m
and  3.454  �m,  respectively,  and  for  the 50-year  numerical
model,  15.88  �m  and  3.75  �m.
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