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Abstract

Purpose:  To propose and evaluat e Complex Zernike polynomials (CZPs) t o represent  general 

wavefronts with non uniform intensity (amplitude) in free-from t ransmission pupils.

Methods:  They consist  of three stages: (1) theoret ical formulat ion; (2) numerical implementat ion; 

and (3) two studies of the fi delit y of the reconst ruct ion obtained as a funct ion of the number of 

Zernike modes used (36 or 91). In the fi rst  study, we generated complex wavefronts merging wave 

aberrat ion data f rom a group of  11 eyes, with a generic Gaussian model of  the St iles-Crawford 

ef fect ive pupil  t ransmission.  In t he second study we simulated the wavefront  passing through 

different  pupil stop shapes (annular, semicircular, ellipt ical and t riangular).

Resul t s:  The reconst ruct ions of  t he wave aberrat ion (phase of  t he generalized pupil  funct ion) 

were always good, the reconst ruct ion RMS error was of the order of 10—4 wave lengths, no mat ter 

the number of modes used. However, the reconst ruct ion of the amplitude (effect ive t ransmission) 

was highly dependent  of  t he number of  modes used.  In part icular,  a high number of  modes is 

necessary to reconst ruct  sharp edges, due to their high frequency content .

Conclusions:  CZPs provide a complet e ort hogonal  basis able t o represent  general ized pupi l 

funct ions (or complex wavefronts).  This provides a unifi ed general f ramework in cont rast  to the 

previous variety of  ad oc solut ions. Our results suggest  that  complex wavefronts require a higher 

number of CZP, but  they seem especially well-suited for inhomogeneous beams, pupil apodizat ion, 

etc.

© 2011 Spanish General Council of Optometry. Published by Elsevier España, S.L. All rights reserved.
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Representación de frentes de onda en pupilas con transmisión no uniforme 

mediante polinomios de Zernike complejos

Resumen

Obj et ivo:  Proponer y evaluar los polinomios de Zernike complej os (CZP) para representar frentes 

de onda de intensidad (amplitud) no uniforme a t ravés de pupilas con cualquier t ipo de t ransmi-

sión.

Mét odos:  Consisten en t res etapas:  a) formulación teórica;  b) implementación numérica, y c) rea-

lización de dos estudios evaluando la fi delidad de las reconst rucciones obtenidas en función del 

número de modos de Zernike usados (36 o 91).  En el primer estudio generamos frentes de onda 

complej os usando aberraciones de onda reales de un grupo de 11 oj os, e incorporando (en todos 

los casos) un modelo genérico gaussiano de la t ransmisión efect iva a t ravés de la pupila debida al 

efecto St iles-Crawford. El segundo estudio consist ió en simular el frente de onda a t ravés de aper-

turas de diferentes formas (anular, semicircular, elípt ica y t riangular).

Resul t ados:  La reconst rucción de la aberración de onda (fase de la función pupila generalizada) 

fue sat isfactoria en todos los casos; el error RMS fue siempre del orden de 10—4 longitudes de onda, 

independientemente del número de modos usados. La reconst rucción de la amplit ud (t ransmi-

sión), sin embargo, es muy dependiente de la complej idad del f rente de ondas y del número de 

modos usados. En part icular,  se necesitan muchos modos de Zernike para reconst ruir los bordes 

abruptos de las aperturas, debido a su elevado contenido en altas frecuencias espaciales.

Conclusiones:  Los CZP const ituyen una base completa ortogonal capaz de representar funciones 

pupila generalizadas (o frentes de onda complej os). Esto proporciona un marco general, en cont ra 

de la variedad de soluciones ad oc propuest as previament e.  Los resul t ados muest ran que si 

aumenta la complej idad del frente de onda es también necesario incrementar el número de mo-

dos. En este sent ido, los CZP parecen especialmente interesantes para frentes de onda inhomogé-

neos, pupilas apodizadas, etc.

© 2011 Spanish General Council of  Optomet ry. Publicado por Elsevier España, S.L. Todos los derechos 

reservados.

Introduction

The Zernike polynomial  (ZP) expansion is widely used in 
opt ics because ZPs form a complete orthogonal basis on a 
circle of  unit  radius.  Since many opt ical  syst ems have a 
circular pupil, ZP expansion can be used to describe any real 
funct ion at  the pupil plane, such as the phase of a wavefront  
or t he wave aberrat ion.  They are on t he basis of  many 
applicat ions f rom opt ical design and test ing,  1,2 wavefront  
sensing,  3 adapt ive opt ics,  4 wavef ront  shaping,  5 corneal 
topography, 6 etc.

In all these applicat ions the main assumpt ion is that  the 
pupil  (wavef ront ) or surface (t opography) has a circular 
shape.  However,  in t he human eye,  t he pupil  may not  be 
exact ly circular,  for example for peripheral visual angles, 
and i t s ef f ect i ve t r ansmi ssi on i s not  const ant  but  
approximat ely Gaussian due t o t he wave guiding opt ical 
propert ies of  t he photoreceptors (St iles-Crawford ef fect , 
SCE). 7 In other words, the array of ret inal photoreceptors is 
the last  component  of the opt ical system of the eye with a 
relevant  impact  on image and visual qual it y.  In addit ion, 
t here are many sit uat ions (visual  t est ing,  t raining,  laser 
t reatments,  et c. ) in which art ifi cial pupil  stops or special 
il luminat ion, or simple vignet t ing modify the shape of  the 
nat ural  pupil .  Most  common art i f icial  st ops are circular, 
annular or semicircular,  but  one can fi nd cases where the 
ef fect ive pupil  can have almost  any possible form.  Many 
eyes display irregular pupil shapes or may present  internal 

occlusions.  Furt hermore,  t he problem of  represent ing 
free-form t ransmission pupils appears in any lens or opt ical 
syst em when working of f -axis,  especial ly for wide angle 
opt ics such as t hat  of  t he eye.  Not  only t he pupi l  is not  
circular,  but  i t s shape (eccent ricit y) changes wit h visual 
fi eld and its orientat ion changes with meridian. The problem 
or represent ing the change of low and high order aberrat ions 
across t he 2-dimensional  visual  f ield in a compact  and 
homogeneous way st i l l  lacks a proper solut ion.  Several 
solut ions were proposed in l it erature for part icular cases. 
For instance, Zernike annular polynomials were int roduced 
to deal with annular stops. 8,9 Affi ne (linear) t ransformat ions 
applied to circular pupils (and Zernike polynomials) permit  
t o comput e t he ef f ect s of  rot at ions,  t ranslat ions or 
two-dimensional scaling 10 to pass from circular to ellipt ical 
geomet r i es 11 and vi ce ver sa.  It  i s al so possi bl e t o 
ort hogonal ize Zernike polynomials for general  apert ure 
shapes. 12

A different  but  related issue is the case of inhomogeneous 
t ransmission pupils, or inhomogeneous il luminat ion beams, 
or a combinat ion of both. In the human eye, the SCE means 
t hat  t he ef f ect i ve pupi l  t r ansmi ssi on of  t he eye i s 
approximat ely Gaussian.  7 Modern l ight  sources such as 
lasers,  LEDs,  or  new opt ical  element s such as axicons 
proposed t o compensat e prebyopi a 13 produce wi t h 
inhomogeneous amplitude wavefronts: Gaussian, Bessel or 
associat ed beams.  14, 15 Nowadays apodized mul t i f ocal 
int raocular lenses (with inhomogeneous pupil t ransmission 16) 
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may of fer improved performance over standard IOLs af ter 
cataract  surgery. 17

This brief  overview suggest s a wide pot ent ial  f ield of 
appl icat ion of  a proper descript ion of  general  complex 
wavef r ont s,  w i t h f r ee-ampl i t ude and f r ee-phase 
dist r ibut ions.  The purpose of  t his work is t o st udy t he 
abi l i t y of  CZPs t o represent  t hese general  compl ex 
wavef ront s in human eyes.  To t his aim we st udy t wo 
dif ferent  cases: First  the St iles-Crawford apodizat ion as an 
exampl e of  i nhomogeneous pupi l  t r ansmi ssi on (or 
inhomogeneous amplit ude).  This is especial ly relevant  as 
t his is an int r insic propert y of  t he opt ical  syst em of  t he 
eye,  and also because met hods such as laser ray t racing 
can measure bot h t he ampl i t ude ( f rom t he rel at i ve 
intensit y of  spots) and phase (f rom the cent roid of  spots) 
of  t he wavef ront .  18 Second we st udy di f f erent  t ypes of 
pupil apertures. As we said above, there exist  ef fect ive ad 
hoc solut ions even f or  general  pupi l  shapes.  12 Also f or 
inhomogeneous t ransmission t he st andard approach is t o 
use t wo separat e real  f unct ions f or  T and W.  In t his 
cont ext ,  t here are t wo main pot ent ial  benef i t s of  using 
CZPs.  On t he one hand,  t hey provide a uni f i ed and 
generalized solut ion for a wide variety of  pupil shapes and 
t ransmissions, since the CZPs form a complete orthogonal 
basi s abl e t o r epr esent  any compl ex wavef r ont  i n 
monochromat ic l ight .  The only const raint  imposed to t he 
wavef ront  is t hat  i t  has t o be f ul ly cont ained wi t hin a 
“ reference”  circle.  On t he ot her hand,  as we discuss in 
Sect ion 4, the generalized Nij boer-Zernike (N-Z) approach 
permits one to use the same set  of  coeffi cients to describe 
bot h t he wavef ront  and t he ampl i t ude spread funct ion 
(image qualit y),  by simply changing the basis funct ions. 19,20 
This may be especially relevant  in visual opt ics applicat ions. 
In fact ,  Braat  and co-workers 21 int roduced CZPs to compute 
PSFs using the generalized N-Z theory.

Complex zernike polynomials

From now on we will consider a monochromat ic wavefront  
at  the pupil plane described as a generalized pupil funct ion 
(amplitude and phase) of spat ial polar coordinates:

P(r,u) = T(r,u)e
ikW(r,u) (1)

This complex funct ion is def ined wit hin a circle of  uni t  
radius,  which means t hat  t he radial coordinate r = r / R is 
normalized by the pupil radius R of a reference circle which 
cont ains t he wavef ront .  T represent s t he wavef ront  
ampl it ude,  or ef fect ive pupil  t ransmission and kW is t he 
phase, where W(r,u) is the wave aberrat ion and k is the wave 
number.

Basic formulation

Let  us start  with a brief review of the formulat ion of Zernike 
polynomials. The expression for the real polynomials is (ANSI 
Z80.28 standard) within the circle of unit  radius is:

Zm
n  (r,u) =   

⎫
⎬
⎭

⎧
⎨
⎩

Nm
n  Rn

| m|  (r)cos mu for m ≥ 0

—Nm
n  Rn

| m|  (r)sin mu for m < 0 
 (2)

where r,u are polar coordinates, and the radial part  is given 
by:

Rn
| m| (r) = Rm

n (r) =

 rn — 2s∑
(n—| m| )/ 2

s = 0

(—1)s (n — s)!

s!  [0.5 (n + | m| ) — s] !  [0.5 (n — | m| ) — s]
 (3)

A nor mal i zat i on f act or  i s i ncl uded t o guar ant ee 
orthonormality:

Nm
n  = 

2 (N + 1)
1 + dm0√  (4)

The complex version can be obt ained by considering 
couples of  polynomials wit h angular f requencies +m and 
—m,  cor responding t o t he real  and imaginary par t s 
respect ively.  Af ter t he required normalizat ion by a factor 
√2 it  is st raight forward to arrive to the expression for t he 
complex ZPs.

Cm
n  (r,u) =    Nm

n  R
m
n  (r)eimu1

√2
 (5)

This means that  we const ruct  a couple of a complex C and 
its conj ugated C* (or couple of +m,  —m) from its respect ive 
couple of +m,  —m real Z polynomials:

Cn
| m|  =   Zn

| m|  — iZn
—| m|  

1

√2

⎛
⎝

⎞
⎠  

and 

Cn
| m|* = Cn

—| m| =   Zn
| m|  + iZn

—| m|  
1

√2

⎛
⎝

⎞
⎠  (6)

To recover the real polynomials we only need to take the 
real and imaginary parts:

Zn
| m|  = Re(Cn

| m| ) = Re(Cn
—| m| ) and Zn

—| m|  = —Im(Cn
| m| ) = Im(Cn

—| m| ) (7)

Figure 1 shows some examples of the amplitude and phase 

of the CZPs. Note that  the amplitude 
1

√2  Nn
mabs(Rn

m(r)) only 

depends on radius, whereas the phase term sign(Rn
m(r))eimu is 

a funct ion of  bot h coordinat es (r,u) (t he phase is a pure 
angular f requency only for m = n t hat  is when R is always 
posit ive, such as for C3

3).

Representation of real and complex functions

The classical expansion of a real funct ion, such as the wave 
aberrat ion W in terms of ZPs is

W = ∑ an
mZn

m or ∑ bn
mCn

m*

n,m n,m  (8)

where an
m are real  and bn

m are compl ex coef f i ci ent s 
respect ively.  Not e t hat  in t he complex expansion t he 
polynomials are conj ugated.  It  is immediate t o show that  
for real funct ions, the complex coeffi cients can be computed 
from the real ones:
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an
|m|  — ian

—|m|

√2
and bn

—|m| = bn
|m|* =         

an
|m|  + ian

—|m|

√2
bn

|m| =          (9)

And conversely,

bn
m + bn

—m

√2
an

| m| =       = √2 Re(bn
m)

  and

bn
|m|  — bn

—| m|

√2
an

—|m| =         = √2 Im(bn
| m| )

 (10)

As a consequence of these expressions, for real funct ions 
bn

—m = bn
m* the coeffi cients with —m and +m are conj ugated, 

which means that  they are not  independent  (but  redundant). 
This is a general property of this type of expansions, such as 
complex Fourier series, etc. Therefore, it  is totally equivalent  
t o use real or complex versions of  ZPs t o represent  wave 
aberrat ions (or real funct ions in general),  and Eqs.  9 and 
10 permit  t o pass f rom the real t o t he complex basis and 
conversely. However, these relat ions do not  hold for complex 
funct ions in general.

For complex wavefronts, we simply combine Eqs. 1, 5 and 
8 to obtain:

P(r,u) = ∑
n,m

 bn
mCn

m* = ∑
n,m

 bn
m    Nn

mRn
m (r)e—imu

1

√2
 (11)

where bn
m are the complex coeffi cients of  the expansion. 

Not e t he negat ive sign in e—imu t o t ake int o account  t he 
complex conj ugat ion Cn

m*.  The real coef f icient s a are not  

defi ned in t his case.  Nevertheless,  when W is given as an 
expansion of  real ZPs it  is st raight forward t o express t he 
relat ionship between the real and complex coeffi cients:

∑
n,m

 bn
mCn

m* = T(r,u)e
∑
n,m

ik an
mZn

m

   or  (12a)

∑
n,m

 an
mZn

m =   ln(∑
n,m

 bn
mCn

m* /  | ∑
n,m

 bn
mCn

m*| )
—i

k
 (12b)

For pract ical implementat ion we wil l  assume a l imit ed 
number of coeffi cients and sampling points in the wavefront , 
so that  these equat ions can be expressed in vector-mat rix 
notat ion (see next  Sect ion).

Implementation and results

Numerical methods

In t he numerical implementat ion,  we work wit h discrete 
(sampled) wavef ront s so t hat  t he cont inuous expressions 
t ranslat e int o a mat rix-vector formulat ion.  We appl ied a 
square sampling grid,  and took 3720 points within a circle 
(34 samples along it s radius.) The samples of  the complex 
wavef ront  were arranged as t he 3720 component s of  a 
column vect or p.  In t he series expansion of  Eq.  11,  we 
considered t wo cases wit h maximum order  n = 7,  t hat  is 
36 polynomials or modes, and n = 12, which means 91 modes. 
In each case we const ruct ed a complex mat r i x C,  of 
3720 × 36 and 3720 × 91 respect ively. Then, Eq. 11 becomes 
p = Cb where b is another column vector formed by either 
36 or 91 complex coeffi cients. To compute the coeffi cients b 
of the expansion we applied a standard least  squares fi t  to 
t his st rongly oversampled set .  This is equivalent  t o apply 
the pseudoinverse of C to the data:

b = (CTC)—1CTp (13)

Note t hat  Eq.12a means that  vector p = t .eikZa,  where the 
dot  product  means el ement  by el ement .  Conversel y
a = —i

k
 (ZTZ)—1ZT(lnCb — ln| Cb| ).

Stiles-Crawford apodization

The f i rst  numerical  st udy consist ed of  represent ing t he 
generalized pupil funct ion (Eq. 1) of  a group of  11 human 
eyes wi t h CZPs wi t h a var iet y of  pupi l  sizes and RMS 
wavefront  errors.  The experimental wave aberrat ion data 
(W) were taken from a previous study, 22 whereas a generic 
Gaussian model 7 was used to describe the amplitude for all 
eyes:

T(r,u) = 10—0.07r2/ 2 (14)

where the argument  is divided by 2 to pass from intensity to 
ampl i t ude.  (Not e r  is t he physical  radial  coordinat e is 
r  = rR in mm.) The qualit y of  reconst ruct ions with CZPs is 
high for most  eyes. The RMS error for the wave aberrat ion 
(phase) is of the order of 10—4 wavelengths in all cases. The 
average is 5 × 10—4 ± 2 × 10—4 l both for 36 and 91 modes 

Figure 1 Ampl i t ude (lef t ) and phase (r ight ) of  complex 

Zernike polynomials. The three examples correspond to C1
3,  C

3
3 

and C6
12 respect ively.
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reconst ruct ions,  which is wel l  below t he sensi t ivi t y of 
experiment al  aberromet ers.  For t he ampl i t ude t he RMS 
er ror  improves wi t h t he number  of  complex Zernike 
modes used.  For reconst ruct ions wit h 36 complex modes 
(up t o 7t h order),  t he average RMS error (11 eyes) was 
1.6 × 10—2 ± 1.8 × 10—2 pupil t ransmit tance. The maximum 
reconst ruct ion error (worst  case) was 4.7 × 10—2 for subj ect  
RN (OD) who also had the largest  pupil diameter 6.5 mm and 
the largest  wave aberrat ion 0.5 mm RMS. The minimum error 
(best  case) was 2.8 × 10—3 for subj ect  JA (OD) who had the 
smaller pupil, 4.5 mm, and only 0.1 mm RMS wave aberrat ion. 
When we increase the number of  modes to 91 (up to 12th 
order ) ,  t he phase reconst ruct i on does not  improve 
signifi cant ly (as it  was already good for 36 modes), but  the 
amplitude improves so that  the average RMS reconst ruct ion 
error is one order of magnitude lower 1.6 × 10—3 ± 2.6 × 10—3 
now.  The values for t he same worst  and best  cases also 
improves, being 7.1 × 10—3 for RN (OD) and 3.7 × 10—5 for JA 
(OD).  Figs.  2 and 3 show t he original  and reconst ruct ed 
ampl i t ude ( l ef t  panel s)  and phase ( r i ght  panel s) 
corresponding to these two best  (JA) and worst  (RN) cases, 
respect ively.  In these and following fi gures, the upper row 
corresponds t o t he reconst ruct ion wi t h 36 modes;  t he 
cent ral row to t hat  obtained with 91 modes;  whereas the 
bot tom row shows to the ideal case, labeled with ∞ to mean 

the exact  result  expected when the series are not  t runcated 
(in fact  label  ∞ correspond t o t he ini t ial  dat a,  T and W 
r espect i vel y) .  The r econst r uct i ons l ook vi sual l y 
indist inguishable from the original when the error is clearly 
below 10—2,  which is always t he case for phase.  On t he 
cont rary,  t he amplit ude display clearly visible dif ferences 
with the original in several 36 modes reconst ruct ions (see 
Fig. 3 upper row). These eyes (3 out  of 11) have larger pupils 
and larger higher order aberrat ions than the mean.

In summary, CZPs seem able to represent  the generalized 
pupi l  funct ion (ampl i t ude and phase simul t aneously) of 
human eyes.  Nevert heless,  f or  large pupi l s,  since t he 
amount  of higher order aberrat ions is usually large too, it  is 
necessary t o use more complex modes (higher orders) t o 
obtain an accurate representat ion.

Free-form pupil stops

The next  study consisted in numerical simulat ions. Here we 
considered three dif ferent  wavefront  aberrat ions: (1) one 
wavelength (l) of pure spherical aberrat ion W = Z0

4;  (2) 1 l 
of  pure coma W = Z1

3 and (3) one example of  ocular wave 
aberrat ion taken from the above study. In this case the pupil 
t ransmission is binary. This means that  we consider different  
pupi l  st op shapes wi t hin t he reference ci rcle,  and t he 

Figure 2 Reconst ruct ions of  t he amplit ude (lef t ) and phase 

(right ) of  t he wavef ront  for subj ect  JA OD: wit h 36 complex 

Zernike modes (upper panels) and wit h 91 modes (cent ral 

panels) and original (lower panels, ∞ modes) wavefront .

Figure 3 Reconst ruct ions of  t he amplit ude (lef t ) and phase 

(r ight ) of  t he wavef ront  f or  subj ect  RN OD.  Or iginal  and 

reconst ruct ions as in Fig. 2.
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t ransmission is assumed t o be one (maximum) wit hin t he 
apert ure and zero out side.  In part icular we simulat ed 
annular (Fig. 4), semicircular (Fig. 5), ellipt ical or t riangular 
(Fig. 6) pupil stops. The phase is pure coma in Figure 4 and 
pure spherical aberrat ion in Figure 5.  In Figure 6 only the 
ampl i t ude is displayed as t he phase reconst ruct ion was 
similar t o t hat  of  previous fi gures.  We also simulated t he 
case of  Gaussian apodizat ion (as in Sect ion 3.2) for pure 
coma and pure spherical aberrat ion.

The accuracy obtained for the reconst ruct ions, in terms 
of  the RMS dif ference between reconst ructed and original 
data (amplitude and phase respect ively) are listed in Table 1 
for case (2),  coma.  The resul t s for t he ot her t wo cases 
(spherical aberrat ion and real ocular wave aberrat ion) are 
not  included since t hey are t otal ly equivalent  (close RMS 
values).  The phase reconst ruct ion was good in al l  cases, 
no mat ter t he t ype of  amplit ude funct ion or pupil  shape. 
The RMS phase error is of  t he order of  6 × 10—4 (l unit s) 
independent ly from the number of modes considered, as in 
the former study. On the cont rary, the reconst ruct ion of the 
amplitude is st rongly dependent  on the init ial t ransmit tance 
funct ion T.  For t he ci rcle (t r ivial  case,  f i rst  column in 
Table 1) t he reconst ruct ion is basical ly perfect ,  since the 
circle is fully represented by the piston term C0

0 = 1. When T 
is Gaussian, the reconst ruct ion is good, but  improves further 

by increasing the number of  modes (about  three orders of 
magnitude when passing from 36 to 91 modes). This result  is 
also consist ent  wit h t hat  obt ained wit h real eyes.  In t he 
ot her cases (annular,  semici rcle,  el l ipse,  t r iangle) t he 
number of modes used here seems insuffi cient  to accurately 
represent  t he sharp edges of  t he st op.  In f act ,  we can 
observe ringing or wavy-like art ifacts in the reconst ruct ions, 
which tend to improve by increasing the number of modes. 
The amplitude RMS errors are now of the order of 10—1 even 
for 91 modes. This seems the main limitat ion of this method: 
the reconst ruct ion of sharp edges in the amplitude funct ion 
requires higher order modes (f requencies),  whereas t he 
method seems to work well when both modulus and phase 
are smooth funct ions.

Discussion and conclusions

In t his ar t icle we propose t he use of  complex Zernike 
polynomials to represent  complex wavefronts, or generalized 
pupil funct ions,  with f ree-f rom amplit ude and phase. The 
main advant age is t hat  t he CZPs basis provides a unif ied 
f ramework as opposed t o a ser ies of  ad hoc solut ions 
published in the l it erature for each t ype of  aperture.  Our 
numerical  resul t s are highly sat isfact ory whenever bot h 

Figure 4 Reconst ruct ion of  a wavefront  with one lambda of 

pure coma Z1
3 t hrough an annular  aper t ure.  Or iginal  and 

reconst ruct ions as in Fig. 2.

Figure 5 Reconst ruct ion of  a wavefront  with one lambda of 

pure spherical aberrat ion Z0
4 t hrough a semicircular aperture. 

Original and reconst ruct ions as in Fig. 2.
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ampl i t ude and phase are smoot h f unct ions wi t hin t he 
reference circle. This could be especially useful to represent  
pupil apodizat ion, complex fi lters, or inhomogeneous beams 
(Gaussian,  Bessel,  et c. ) Nevertheless,  our result s suggest  
that  the number of modes (or order of polynomials) needed 
to obtain a high fi delit y representat ion increases with the 
degree of complexity. A totally dif ferent  behavior was found 
for amplitude and phase. The reconst ruct ion of  phase was 
always good (regardless of the number of modes), whereas 
t he ampl i t ude showed a st rong dependency on bot h t he 
number of modes and the amount  of high order aberrat ions. 
A plausible explanat ion for the good phase reconst ruct ions 
could be that  the init ial values of phase were also given in 
terms of real ZP expansions, and real and complex ZPs are 
closely related. On the cont rary, the amplitude was either a 

Table 1 RMS reconst ruct ion errors for the dif ferent  pupil t ransmissions and for 1 l of pure coma. The errors for other 

aberrat ions are totally equivalent

 Circle Gaussian Annular Semicircle Ellipse Triangle

Amplitude

36 modes 1.9 × 10—14 2.6 × 10—3 1.5 × 10—1 1.5 × 10—1 1.7 × 10—1 2.4 × 10—1

91 modes 2.5 × 10—15 3.1 × 10—6 1.0 × 10—1 1.2 × 10—1 1.3 × 10—1 1.8 × 10—1

Phase

36 modes 5.7 × 10—4 5.7 × 10—4 5.8 × 10—4 5.7 × 10—4 6.2 × 10—4 5.8 × 10—4

91 modes 5.7 × 10—4 5.7 × 10—4 5.7 × 10—4 5.7 × 10—4 6.3 × 10—4 5.8 × 10—4

Figure 6 Original and reconst ructed amplitudes for ell ipt ical 

(left ) and t riangular (right ) apertures. The phase reconst ruct ion 

was as good as in previous fi gures.

Gaussian or binary geomet r ic masks.  In f act ,  t he main 
l i mi t at i on appear s when at t empt i ng t o r epr esent  
discont inuit ies, such as sharp edges, or very high frequency 
features with a low number of modes. When one t ries that , 
then the reconst ruct ion shows smoothed versions of  edges 
wit h ringing or wavy art i fact s around.  These ef fect s are 
analogous to the aliasing art ifacts that  one fi nds in Fourier 
analysis due to spect ral overlapping. 23 To avoid this type of 
art ifacts, when comput ing the Fourier t ransform, the signal 
must  be band-limited and the minimum sampling (Nyquist ) 
f requency has t o be double t hat  t he maximum f requency 
present  in the signal.  In Fig.  1 we can appreciate that  the 
CZPs show a sort  of radial and angular frequencies associated 
to n and m.  Roughly speaking, in order to represent  a small 
(high f requency) feat ure in t he wavef ront ,  we need t o 
include higher order modes which may display features of 
the same size.

In t he examples studied so far,  t he phase was a smooth 
funct ion (ZP expansion),  what  is a common si t uat ion in 
opt ics.  In t hese cases,  and when t he accuracy demand is 
important  mainly for t he phase of  t he wavefront  (what  is 
also usual ),  t hen one can get  reasonable resul t s wit h a 
l i mi t ed number  of  modes such as i n t he pr esent  
i mpl ement at i on (36 or  91 modes) .  When very hi gh 
frequencies are present  and accuracy requirements are high 
t oo,  t hen ad hoc solut ions or Fourier series may be more 
ef f icient  comput at ional l y.  This is mainly because t he 
evaluat ion of  long polynomial  st rings is t ime consuming. 
However, CZPs present  important  advantages. As we said in 
the int roduct ion, the N-Z theory 19 of image format ion shows 
that  it  is possible to establish a linear relat ionship between 
t he modal expansion of  t he image of  a point  source,  t he 
amplitude spread funct ion (ASF), and a modal expansion of 
the complex wavefront . 20 If  we neglect  constants:

ASF(k,f) = FT[P(r,u)] = FT[∑
n,m

 bn
mCn

m*]  = ∑
n,m

 bn
mUn

m(k,f) (15)

where funct ions Un
m(k,f) = FT[Cn

m* (r,u)]  are t he Fourier 
t ransforms of  CZPs.  They have an analyt ical  expression 
similar t o t hat  of  ZPs,  but  in t erms of  Bessel funct ions,  21 
instead of radial polynomials Rn

m.  In other words, the same 
coeffi cients describe the generalized pupil funct ion and the 
image of  a pint  source.  For incoherent  i l luminat ion,  t he 
point -spread funct ion,  PSF, is t he squared modulus of  t he 
ASF: PSF(k,f) = | ASF(k,f)| 2. In addit ion to saving comput ing 
t ime,  t his t heory permi t s a di rect ,  simple connect ion 
between wavefront  and image qualit y met rics could have 
a high potent ial in applicat ions in visual opt ics,  including 
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t he opt ical  design of  advanced opt ical  element s.  The 
implementat ion and pract ical applicat ions of Eq. 15 will be 
the subj ect  of future work.
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