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Abstract

Purpose: To develop and validate a custom deep learning-based automated segmentation for

choroidal thickness of optical coherence tomography (OCT) scans.

Methods: An in-house automated algorithm was trained on a Deeplabv3+ network, based on

ResNet50, using a training set of 10,798 manually segmented OCT scans (accuracy 99.25% and loss

0.0229). A test set of 130 unique scans was segmented using manual and in-house automated meth-

ods. For manual segmentation, the choroid-sclera border was delineated by the user. For in-house

automated segmentation, all borders were automatically detected by the program and manually

inspected. Bland-Altman analysis, intraclass correlation coefficient (ICC), and Deming regression

compared the central 1-mm diameter and 3-mm and 6-mm annuli for the two methods. The in-house

method was also compared with an open-source algorithm for the test set of 130 scans.

Results: Mean choroidal thicknesses obtained with manual and in-house automated methods

were not significantly different for the three regions (P > 0.05 for all). The fixed bias between

methods ranged from -2.41 to 3.49 mm. Proportional bias ranged from -0.04 to -0.12 (P < 0.05

for all). The two methods demonstrated excellent agreement across regions (ICC: 0.96 to 0.98,

P < 0.001 for all). The open-source automated method consistently resulted in thinner choroidal

thickness compared to manual and in-house automated methods.

Conclusions: Custom in-house deep learning automated choroid segmentation demonstrated

excellent agreement and strong positive linear relationship with manual segmentation. The

automated approach holds distinct advantages for estimating choroidal thickness, being more

objective and efficient than the manual approach.

© 2025 The Author(s). Published by Elsevier España, S.L.U. on behalf of Spanish General Council

of Optometry. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Myopia prevalence is increasing worldwide, prompting exten-

sive research efforts to understand underlying mechanisms and

develop effective tools to control its progression.1,2 Recent
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studies have highlighted the potential significance of the cho-

roid, the vascular tissue providing blood supply to the outer

retina and sclera.3 The choroid is located between Bruch’s

membrane and the sclera, extending from the ora serrata

anteriorly to the optic nerve posteriorly. The outermost layer

of the choroid is the suprachoroidal lamina; deep to the supra-

choroidal lamina are the large diameter vessels (Haller’s

layer), the medium-diameter vessels (Sattler’s layer), the cho-

riocapillaris, and a basement membrane, which forms the out-

ermost layer of Bruch’s membrane.4 Besides its vascular

functions, the choroid may also have a role in regulating eye

growth. The choroid thickens during emmetropization; how-

ever, the choroid tends to thin with the development and pro-

gression of myopia.5,6

The choroid has been shown to dynamically modulate its

thickness in response to various environmental cues in both

humans and animal models.7�10 For example, when the

image plane is moved posterior to the retina through

imposed negative defocus, the choroid responds within

minutes by reducing its thickness to position the retina more

posteriorly to align the photoreceptors with the plane of

focus.9,11 Conversely, the choroid has been shown to thicken

in response to imposed positive defocus.10 Although large

compensatory changes in choroidal thickness in response to

imposed defocus are reported in chicks,7 the changes are

relatively small in humans and other animal models,4 such as

guinea pigs,8 marmosets,12 and rhesus monkeys.13 Neverthe-

less, the association has prompted extensive research into

the role of the choroid in human myopia development,

emphasizing the need to accurately and efficiently monitor

dynamic thickness changes over time.3

Optical coherence tomography (OCT) is a non-contact imag-

ing technique that generates high-resolution cross-sectional

images of the eye.14 Because OCT provides real time in vivo

images without impacting the tissue under examination, it has

emerged as a standard clinical and research tool for imaging

the posterior eye. Since its introduction in 1991,15 continuous

improvements in technology, incorporating features such as

eye tracking, averaging, and enhanced depth imaging (EDI),

have significantly improved the imaging capabilities of

OCT.16,17 These improvements have particularly facilitated the

acquisition of high-quality images of deeper ocular layers, such

as the choroid.16�19 Commercial OCT instruments provide qual-

itative and quantitative analysis of the retina. However, analy-

sis of the choroid with appropriate consideration of

magnification effects is not included in most commercial

instruments’ software. Unlike the retina, the choroid lacks dis-

tinct, ordered layers and does not exhibit clear reflective

properties.16,17 Hence, accurately identifying the posterior

choroid boundary and determining thickness poses a challenge.

For some OCT instruments, sub-foveal choroidal thickness can

be estimated manually using the software’s caliper tool by

drawing a line from the retinal pigment epithelium to the cho-

roid-sclera border, beneath the fovea.16 Due to limitations

inherent in this manual approach, alternative methods and

tools have been developed and tested using exported OCT

scans. These tools employ different strategies to automatically

detect the choroid boundaries and consequently derive its

thickness. The most common approach for choroid segmenta-

tion involves manual analysis, where an observer identifies and

delineates the choroid-sclera border.20,21 This process is time

consuming and subject to observer bias and variability.

Development of programs that can automatically detect

boundaries of interest are being extensively explored.

Among several automated techniques, a graph-search based

approach has been most widely adopted.22�25 More recently,

with advances in computing, software programs based on

machine learning, deep learning techniques are being

adopted.23 For example, Sui et al.26 presented a multi-scale

convolutional neural network (CNN) in which an optimal

graph-edge weight could be learned directly from raw pix-

els. Similarly, Chen et al.27 utilized a CNN based on SegNet

design, consisting of an encoder-decoder network and pixel-

wise classification layer to generate edge probability maps

for the interior Bruch’s membrane and the choroid/sclera

border. A technique known as “seam carving” was then used

to delineate the two boundaries in the image by finding a

path of connected pixels across its width.

Kugelman et al.28 investigated the performance of a

range of deep learning methods, including both patch-based

and semantic approaches, for OCT choroid boundary seg-

mentation. Their findings revealed superior performance of

deep learning methods compared to a standard image analy-

sis method used as a baseline. More recently, Burke et al.29

evaluated an automatic deep learning algorithm, DeepGPET,

and found excellent agreement with a clinically validated

semi-automatic method, Gaussian process Edge Tracing

(GPET). DeepGPET also achieved significantly reduced mean

processing time than GPET. The same research group later

developed Choroidalyzer, an open-source tool designed for

comprehensive analysis of the choroid, including measure-

ments of thickness, area, and vascular index.30

In this study, we aimed to validate a custom CNN based

MATLAB program, trained on a Deeplabv3+ network, based

on ResNet50 and designed to automate choroid segmenta-

tion of OCT scans by identifying the inner and outer bound-

aries of the choroid. Choroidal thicknesses obtained from

this in-house automated program were compared to those

from a traditional manual approach, and repeatability was

assessed. Additionally, the performance of the in-house

automated method was compared with the open-source

deep-learning model, the Choroidalyzer.30

Material and methods

All training and test scans were collected with a Spectralis

OCT (Spectralis; Heidelberg Engineering, Heidelberg, Ger-

many). The algorithm for the in-house automated segmenta-

tion program utilized a convolutional neural network (CNN)

trained on a Deeplabv3+ network, based on ResNet50

(Fig. 1). The CNN was trained using 10,798 manually seg-

mented B-scans to an accuracy of 99.25% and loss of

0.022931 and has been utilized in previously published

papers.32,33 To assess the model’s performance, we per-

formed 10K-fold cross-validation, ensuring that each subset

of data was used for both training and validation. The model

achieved a mean Dice coefficient of 0.9935 § 0.0001 and an

intersection over Union (IoU) score of 0.99 across 10K-fold

cross-validation, demonstrating strong agreement with man-

ual segmentation. To test the automated segmentation pro-

gram, OCT scans that had been manually segmented were

run through the in-house automated segmentation program

and thicknesses were compared. The test set included 136
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unique OCT scans of 136 participants from seven different

studies, randomly selected to compare with the automated

program. These scans had been previously manually seg-

mented and were not included in the CNN training set. Six

scans were excluded either due to poor scan quality, reduced

contrast, indistinct choroid boundaries, or a combination of

these factors. Thus, 130 OCTscans were included for analysis.

Each of the previous studies was approved by the institutional

review board at the University of Houston. All OCT imaging

had been performed under similar conditions. The OCT scan

protocol included two high-resolution, six-line 30⁰ radial

scans, centered on the fovea, and were captured using

enhanced depth imaging (EDI) mode (Fig. 2). For all previous

studies in our lab from which the test scans were derived,

two consecutive OCTscans at each time point were collected.

These scan pairs were used to test repeatability of each seg-

mentation method, the traditional manual method and the

in-house automated method. To avoid selection bias, only

one scan per participant, either from the right or left eye,

was included for comparing manual and automated segmen-

tation. The selected scans were exported from the OCT

instrument as .vol files, each of which underwent a separate

manual and automated segmentation using custom programs

written in MATLAB (MathWorks, Natick, MA, USA). For both

manual and automatic programs, transverse scaling of each

OCT scan was calculated and applied to account for ocular

Fig. 1 Protocol. Manually segmented scans (N = 10,798) were input as the training set to develop the convolutional neural network.

A test set (N = 130) was then subjected to both manual and in-house automated segmentation, as well as an open-source automatic

segmentation program, the Choroidalyzer, and compared to the manual and in-house methods.

Fig. 2 Scan and segmentation protocol. A) High-resolution, six-line 30⁰ radial scans, centered on the fovea, were captured using

enhanced depth imaging mode; B) Scans were segmented for the inner limiting membrane (yellow), Bruch’s membrane (blue), and

choroid-sclera border (red) and analyzed for the central 1 mm diameter and 3 mm and 6 mm annuli; C) Choroidal thickness maps

were generated post-segmentation.
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magnification.20 The scaling factor was determined based on

each participant’s axial length and corneal curvature, which

was input in MATLAB during the analysis.

For manual segmentation, a custom MATLAB program was

utilized, as described previously.20,34 MATLAB read the OCT

scans as a .vol file. The user manually entered the axial length

and corneal curvature for that participant. For each of the six

radial B-scans, the user first confirmed and, when required,

corrected Bruch’s membrane border segmentation provided by

the OCT instrument, and then manually delineated the cho-

roid-sclera border for each set of six radial B-scans.

For automated segmentation via the in-house method,

upon loading an OCT .vol file into MATLAB, axial length and

corneal curvature were entered for the participant, and the

CNN identified and automatically delineated Bruch’s mem-

brane and the choroid-sclera border for each of the six radial

B-scans. To test repeatability of the automated segmenta-

tion method, the two consecutive OCT scans at each time

point for each participant were analyzed separately with

the automated segmentation program. All scans were care-

fully examined for quality and consistency of the choroid-

sclera delineation across scan pairs and segmentations were

manually corrected when required. Since the in-house

method requires occasional manual corrections, we describe

it as "semi-automated.”

Following segmentation by either the manual or in-house

automated methods, the center of the fovea (region of mini-

mal thickness) was manually selected on the retinal thick-

ness map. Then, the average choroidal thickness within

three regions, the central 1 mm diameter and 3 mm and

6 mm annuli, were extracted. For each annulus, thickness

was also determined for each quadrant, temporal, superior,

nasal and inferior. The choroidal thicknesses obtained from

the manual and automated methods were compared. For a

subset of the dataset, we also recorded the time taken to

perform both manual and automated segmentation. This

comparison allowed an assessment of efficiency of the in-

house automated method in terms of processing time.

To further evaluate its performance, the in-house auto-

mated segmentation method was compared with an open-

source deep-learning based model, the Choroidalyzer, which

utilizes a U-Net architecture. The current dataset, including

OCT scans from 130 participants, was independently seg-

mented using the two automated methods. For segmenta-

tion with the Choroidalyzer, the OCT scans were exported as

XML files and cropped and padded to 768 £ 768 pixels to

match the analysis requirements. Following segmentation,

the average sub-foveal choroidal thickness within the cen-

tral 1-mm diameter and the 3-mm annulus was obtained,

similar as described earlier. Transverse scaling was applied

to account for ocular magnification. Choroidal thickness

obtained from the Choroidalyzer and the in-house auto-

mated method were compared to those from the manual

method.

Data analysis

Statistical analyses were performed using MATLAB and R

version 4.3.2 (R Core Team 2023). Bland-Altman analysis

and intraclass correlation coefficient (ICC) were used to

compare the choroidal thicknesses obtained from the man-

ual and automated segmentation methods in the same

regions for each OCT scan. ICC was calculated using the

two-way mixed effects, absolute agreement model to eval-

uate the magnitude of agreement between methods. The

presence of fixed bias (mean difference between the two

methods) was tested using one-sample t-test. Proportional

bias was evaluated using a linear regression model. Addi-

tionally, Deming regression was used to evaluate system-

atic differences between the two methods.35 Repeated

measures ANOVA with post-hoc Bonferroni corrected pair-

wise comparisons were used to assess differences in choroi-

dal thickness across regions and quadrants as derived from

the in-house automated method.

Results

For the 130 test OCT scans, participants’ mean (§ standard

deviation) age was 23.5 § 9.6 years (range 21�46 years).

Mean spherical equivalent refraction and axial length were

�1.96 § 1.04 D (range �7.50 to +6.50 D) and

24.46 § 8.66 mm (range 19.90 to 27.62 mm), respectively.

For each 6-line radial scan .vol file, the in-house automated

segmentation took <60 s to process. If manual correction

was required, the analysis tool an additional 3�5 min. On

the other hand, the traditional manual segmentation took

approximately 30 min.

Repeatability of the in-house automated method

Repeatability of the in-house automated segmentation

method was assessed by performing automated segmenta-

tion on two repeat scans for each participant (Fig. 3). Eight

of the 130 OCT scans included in the test group were

excluded as repeat scans were either missing or corrupted.

Consequently, 122 scan pairs were evaluated for repeat-

ability. Nineteen of the 122 pairs had one (N = 6) or both

(N = 13) scans (32 scans out of 244 in total) of poor quality,

reduced contrast, indistinct choroid boundaries, or pres-

ence of shadows that impaired automated segmentation in

some way and exhibited a difference of >20 mm between

scans. Examples include pairs where segmentation for one

scan included an indistinct vessel within the choroidal

boundary while the other scan excluded it; one scan

showed undulations in the segmentation of choroid-sclera

boundary while the other scan presented a smoother cho-

roidal boundary; or segmentation for one scan tightly

hugged the major vessels while the other scan included a

portion of the suprachoroidal lamina along with the major

vessels. These scans required manual correction to ensure

a consistent segmentation criterion was applied to both

scan pairs. After manual correction, the pairs showed

excellent agreement of choroidal thickness, with the ICC >

0.99 (P < 0.001, Fig. 3C). The mean difference (§ standard

deviation) in choroidal thickness between the two scans of

each pair was 0.87 § 7.58 mm (95% CI from �2.23 to

0.49 mm) for the 1 mm diameter centered at the fovea. For

additional comparison, we also evaluated the repeatability

of the manual method across the same scan pairs (N = 122)

(Fig. 3D). These scan pairs exhibited excellent agreement

with the ICC > 0.99 (P < 0.001) and showed slightly smaller

limits of agreement compared to the corrected scan pairs

of the automated segmentation method.
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Agreement between manual and in-house

automated methods

Bland-Altman analysis for mean choroidal thicknesses using

the manual and in-house automated methods for the central

1 mm diameter and 3 mm and 6 mm annuli centered at the

fovea are shown in Fig. 4. The mean differences (§ standard

deviation) between the two methods were 1.75 § 18.52 mm

(95% CI from �1.46 to 4.97 mm), �0.07 § 17.45 mm (95% CI

from �3.10 to 2.96 mm), and 1.69 § 13.61 mm (95% CI from

�0.67 to 4.05 mm) for 1 mm diameter and 3 mm and 6 mm

annuli, respectively (Table 1).

Indices of agreement and correlation between the man-

ual and in-house automated methods obtained with Bland-

Altman analysis and intraclass correlation coefficient (ICC)

across different regions and quadrants, centered at the

fovea, are shown in Table 1, and output of Deming regression

analysis is shown in Table 2. The two methods demonstrated

Fig. 3 A) Automated segmentation was inspected for errors in identification of the choroid sclera border (white arrowheads); in

this example, segmentation tightly hugged the major vessels while the segmentation of the other scan in the pair (not shown)

included a portion of the suprachoroidal lamina along with the major vessels; B) manual correction of the automated segmentation;

C) fully manual segmentation of the same scan; Bland-Altman analysis of repeatability of the choroidal thickness of the 1 mm diame-

ter centered at the fovea obtained from two repeat scans (N = 122 pairs) for D) fully automated segmentation, E) after manual cor-

rection, when required, and F) the fully manual method. Solid blue lines represent the mean difference between the two scans;

dashed pink lines represent the 95% limits of agreement, and black lines represent the inner and outer 95% confidence limits for the

limits of agreement.

Fig. 4 Bland-Altman analysis of choroidal thicknesses derived from the manual and in-house automated methods for the A) 1 mm

diameter, B) 3 mm annulus, and C) 6 mm annulus centered at the fovea. Solid blue lines represent the mean difference between the

two methods; dashed pink lines represent the 95% limits of agreement, and black lines represent the inner and outer 95% confidence

limits for the limits of agreement.
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an excellent agreement (ICC: 0.96 to 0.98, P < 0.001 for all)

across all analyzed regions and quadrants. The fixed bias

between the two methods was consistently small across all

regions, ranging from �2.41 to 3.49 mm, with p-values >

0.05 for all comparisons, except the superior quadrant of

6 mm annulus (P = 0.02). A small proportional bias was

observed with values ranging from �0.04 to �0.12

(P < 0.05), across all regions (Table 1). Deming regression

demonstrated an excellent linear relationship between the

two methods across all examined regions with slopes ranging

between 0.88 and 0.96 and intercept ranging between 12.67

to 36.74.

Choroidal thicknesses by region and quadrant are shown

in Fig. 5. Repeated measures ANOVAs showed that the mean

choroidal thicknesses derived from the manual and in-house

automated methods were not significantly different

(F(1129) = 0.69, P = 0.41). For both methods, choroidal thick-

ness varied by region (F(2258) = 136.85, P < 0.001). Post-hoc

pairwise comparisons showed that choroidal thickness in the

central 1 mm diameter was greater than the 3 mm and 6 mm

annuli, and choroidal thickness in the 3 mm annulus was

greater than the 6 mm annulus (P < 0.001 for all). Within

both the 3-mm and 6-mm annuli, choroidal thickness was

greatest in the superior quadrant, followed by the temporal

and inferior quadrants, and least in the nasal quadrant

(P < 0.001 for all).

Fig. 6 presents the Bland-Altman analysis comparing the in-

house automated method and the open-source automated

method, the Choroidalyzer, to manual segmentation. The

mean difference (§ standard deviation) between the manual

and the in-house automated methods was 1.75§ 18.52 mm for

the 1-mm region and �0.07 § 17.45 mm for the 3-mm region.

In contrast, the Choroidalyzer consistently underestimated

choroidal thickness in both regions compared to the manual

method, with a mean difference of�39.97§ 30.70 mm for the

1-mm region and �37.48 § 32.72 mm for the 3-mm region.

Note that the 6 mm annulus could not be analyzed using the

Choroidalyzer due to restrictions in the image format required

by the code. Visual inspection of the segmentations from the

Choroidalyzer showed that the choroid-sclera delineation was

positioned closer to the vessel lumen rather than the choroid-

sclera border (Fig. 7).

Discussion

The primary objective of the current study was to assess the

consistency of a custom in-house developed deep learning-

based choroid segmentation program compared to manual

choroid segmentation for choroidal thickness. Additionally,

an open-source automated choroid segmentation was com-

pared to the in-house automated and manual methods. Com-

parisons encompassed different concentric regions,

including the 1 mm central diameter and 3 mm and 6 mm

annuli, as well as for the temporal, superior, nasal, and infe-

rior quadrants within the 3 mm and 6 mm annuli. For a small

percentage of scans (13%, 32 out of 244 scans), some manual

correction was required following automatic segmentation

to ensure accuracy; manual inspection and correction are

common practices with published automated segmentation

programs.22,36,37 Results showed small mean differences

between the traditional manual and in-house automated
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methods, measuring <2 mm and 4 mm when comparing dif-

ferent regions and quadrants, respectively. The in-house

automated program exhibited excellent agreement and

strong positive linear relationship with the outcomes of the

manual method across all the examined regions. Further-

more, the results obtained from the in-house automated

segmentation exhibited high repeatability across the two

consecutive scan pairs, demonstrating consistency within

the same individuals. The advantage of the automated

approach lies in its objective nature and significantly

reduced time required for the segmentation process as com-

pared to manual methods. This ensures precision in estimat-

ing choroidal thickness, reduces bias, and enhances

efficiency, making it a promising and advantageous tool for

future use. The in-house automated segmentation program

was more similar to manual segmentation than the open-

source automated Choroidalyzer program. This appears to

be due to different network architecture and criteria used

in training scans between the two automated methods; the

Choroidalyzer consistently segmented closer to the vessel

lumen of Haller’s layer, rather than the choroid sclera bor-

der. Additionally, the Choroidalyzer required cropping the

OCT image, resulting in loss of data in the 6 mm annulus.

While it may be possible to resize the OCT image, rather

than crop, we chose not to deviate from the analytical

approach outlined in the Choroidalyzer.30 Therefore, the in-

house automated method is preferred and will be employed

in further studies in our lab.

Findings show that caution is warranted when using auto-

mated methods. The discrepancies observed between the

two automated methods highlight how variations in network

architecture and training data can influence segmentation

results. Thus, validation of outputs against a trusted stan-

dard, such as manual segmentation, is essential. Further-

more, visual inspection of segmentation boundaries is

strongly recommended to ensure they align with anatomical

expectations and maintain consistent performance across

diverse datasets and conditions.

It has been suggested that in eyes with a thicker choroid, the

clarity of the choroid-sclera border might be compromised due

to signal loss and artifacts induced by interstitial tissue between

the vessels.38 Consequently, thicker choroids may reduce the

visualization of the choroid-sclera interface, resulting in

extended processing times and increased variability with man-

ual segmentation. The increased variability in thicker choroids

has been observed in studies that have utilized different OCT

instruments to measure choroidal thickness.38,39 Zhang et al.39

evaluated the reproducibility of graph-based automated seg-

mentation using OCT scans derived from swept-source OCT (SS-

OCT) and observed a better relationship with repeated scans

Table 2 Deming regression analysis for the manual and in-house automated methods comparing the mean choroidal thickness

across the central 1 mm diameter and 3 mm and 6 mm annuli, and by quadrant, centered at the fovea (N = 130).

Region Intercept 95% CI Slope 95% CI

Average 1mm 31.73 [20.04, 43.42] 0.91 [0.88, 0.95]

Average 3mm 30.30 [19.17, 41.43] 0.91 [0.87, 0.94]

Temporal 3mm 36.74 [22.96, 50.51] 0.88 [0.84, 0.93]

Superior 3mm 31.42 [17.36, 45.47] 0.91 [0.87, 0.96]

Nasal 3mm 23.16 [11.80, 34.53] 0.93 [0.89, 0.97]

Inferior 3mm 27.44 [15.75, 39.13] 0.92 [0.88, 0.96]

Average 6mm 23.19 [11.92, 34.47] 0.93 [0.89, 0.97]

Temporal 6mm 35.40 [9.78, 61.02] 0.89 [0.80, 0.98]

Superior 6mm 22.71 [10.67, 34.76] 0.94 [0.91, 0.98]

Nasal 6mm 12.67 [5.50, 19.84] 0.96 [0.93, 0.99]

Inferior 6mm 21.74 [10.14, 33.34] 0.94 [0.89, 0.98]

CI, confidence interval.

Fig. 5 Distributions of choroidal thickness computed using the manual (pink boxes) and in-house automated (blue boxes) methods

for (A) the 1 mm diameter and 3 mm and 6 mm annuli, and B-C) temporal (T), superior (S), nasal (N), and inferior (I) quadrants within

the B) 3 mm annulus and C) 6 mm annulus centered at the fovea. *P < 0.001 for differences between regions (A) and quadrants (B &

C), central line of each bar represents the median, X represents the mean.
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compared to a manual method (R2 of 0.97 for automated and

0.93 for manual). Additionally, for choroidal thicknesses beyond

300 mm, the data points showed a larger spread with the man-

ual method, which highlights the measurement variability of

manual segmentation even for repeated scans. In contrast,

Cahyo et al.40 evaluated performance of different deep-

learning based approaches by comparing segmentation volume

and similarity of thickness maps with respect to ground truth

(manual) segmentation and observed better performance in

segmenting even thicker choroids (301�400 mm) across all

deep-learning-based approaches. This observation suggests that

the identification of the choroid-sclera border may be

Fig. 6 Bland-Altman plots comparing the performance of the manual and two automated methods, in-house and open-source, for

choroidal thickness. Agreement between the manual and in-house automated methods for the A) 1-mm and B) 3-mm diameters, and

agreement between the manual and open-source automated Choroidalyzer methods for the C) 1-mm diameter and D) 3-mm annulus.

Solid blue line represents the mean difference between two methods; dashed blue lines represent the 95% limits of agreement.

Fig. 7 A representative OCT scan showing the three segmentation methods, manual (solid red), in-house automated (dashed-yel-

low) and open-source automated (Choroidalyzer, dotted sky blue).
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influenced by different factors when comparing the human eye

to a trained convolutional neural network (CNN). CNNs exhibit

greater consistency, particularly in eyes with thicker choroids,

where visualizing the interface poses a challenge. In our data-

set, increased variation between methods beyond the mean

choroidal thickness of approximately 350 mm was observed.

This could be attributed to variability in manual segmentation

for OCT scans with a thicker choroid, potentially leading to the

small negative proportional bias observed in the study.

Numerous studies have documented choroidal thickness

in healthy eyes across various age and refractive groups.32

Due to differences in study design and participant character-

istics, direct comparisons of choroidal thickness between

studies is challenging. Additionally, choroidal thickness is

known to exhibit diurnal variations20,41 and can modulate in

response to various physiological changes and visual cues.3

Nevertheless, the average choroidal thickness computed in

this study are largely comparable to those reported in previ-

ously published studies, with the majority of data falling

within the range of 200 and 450 mm.42�47 The superior quad-

rant was found to be the thickest and the nasal quadrant

was the thinnest for both 3-mm and 6-mm annular regions.

These observations are consistent with findings from compa-

rable studies that examined choroidal thickness across dif-

ferent geographical regions and eccentricities relative to

the fovea42,43,45�47 and is attributed to the anatomical char-

acteristics, blood supply, and metabolic demands across dif-

ferent regions within the eye.3 The key finding crucial to the

current study is that the choroidal thickness determined by

an in-house automated segmentation method closely

matched that of the traditional manual method across all 11

tested regions (3 concentric regions and 8 quadrants). This

indicates that the proposed automated method offers robust

detection of choroid boundaries and accurately computes

choroidal thickness across various regions of the retina.

Upon evaluating the performance of the in-house auto-

mated method against an open-source automated method,

the Choroidalyzer, results indicated better agreement

between the in-house automated method and manual seg-

mentation. The Choroidalyzer consistently produced a

tighter segmentation of the choroid, leading to underesti-

mation of choroidal thickness compared to the manual

method. This highlights that the discrepancies between the

automated methods can arise from challenges in defining

posterior choroidal boundaries, a region which lacks distinct

reflective properties, driven by differences in network archi-

tectures and training data used in each method. Addition-

ally, the absence of distinct reflective properties at the

posterior boundary becomes more pronounced in thicker

choroids, where signal absorption in OCT images further

diminishes clarity, leading to increased variability in the seg-

mentation results.

The quality of OCT scans is paramount, particularly for

choroid measurements where subtle changes <20 mm must

be detected. Accurate choroidal thickness measurement

depends on precise segmentation of choroid boundaries. If

the boundaries are indistinct due to quality issues, it can

lead to inaccurate quantitative measurements. Therefore,

optimizing image capture and minimizing signal loss is essen-

tial to ensure distinct detection of choroid boundaries. Nov-

ice operators should undergo comprehensive training before

commencing data collection to mitigate potential issues

such as improper fixation, head tilt, eye movements, dry

eyes, incorrect distance between the eye and the device,

axial misalignment of the OCT scanning head, and uneven

illumination during acquisition.48 Additionally, adhering to

manufacturer guidelines is imperative for maintaining qual-

ity standards.49,50 In our dataset, a few of the randomly cho-

sen test scans (N = 6) that had been previously collected

exhibited poor quality or reduced contrast, leading to indis-

tinct choroid boundaries, and were consequently excluded

from analysis.

Our findings suggest that studies involving OCT imaging

for choroidal thickness should use imaging protocols that

capture more than a single scan at each time point. This

enhances confidence in the obtained results and mitigates

the risk of data loss if one of the scans captures appears to

be low quality or corrupted. Out of 130 scan pairs in our test

data, eight scans were excluded from the repeatability

assessment due to missing or corrupted repeat scan meas-

ures. Some of these scan pairs exhibited a difference in cho-

roidal thickness of greater than 20 mm. Although

consecutive scan pairs are expected to be identical, when

imaging is not optimized during scan capture, scans are

prone to quality issues. In such circumstances, fully auto-

mated segmentation might not yield the best results. Care-

ful inspection is still required to ensure the choroid

boundaries are properly segmented. Since our test set was

randomly chosen from seven previous studies, collected and

manually segmented by different individuals, some variation

in scan capture and border identification was expected.

The strength of the current study lies in utilizing a sub-

stantially large set for training the CNN (over 10,000 scans).

The set used for validation also maintained a large sample

size (N = 130), including participants with a diverse age

range, spherical equivalent refraction (SER), and axial

length (AL). The validation set was drawn from seven differ-

ent studies, each meticulously designed and approved by

the institutional review board at the University of Houston.

To avoid selection bias, only one OCT scan per participant

was included, either from the right or left eye (although

scans from both eyes were available). Since different indi-

viduals performed manual segmentation across the seven

studies, any existing individual differences in segmentation

criteria were captured within our comparative analysis.

Both segmentation methods were corrected for transverse

magnification.51

Limitations of the current study include the following.

The in-house automated algorithm was trained and tested

for Spectralis OCT scans only, so testing for other instru-

ments is warranted. All test OCT scans were from young

healthy adults. Future studies should include a broader

range of participants and those with retinal pathology to

confirm generalizability. Future studies are aimed at investi-

gating the performance of the in-house automated method

in children and in participants with pathology, such as age-

related macular degeneration, diabetes, and myopic macu-

lar degeneration, acknowledging that the quality and clarity

of the OCT images can be greatly affected by poor fixation

or with the presence of pathology. In addition, given the

existence of other automated algorithms, future studies

may be aimed at evaluating the performance of the current

approach against other available open-source automated

approaches.

9

Journal of Optometry 18 (2025) 100556



In conclusion, a custom in-house deep learning-based

automated segmentation for quantifying choroidal thickness

demonstrated excellent agreement and a strong positive lin-

ear relationship with the outcomes of the manual segmenta-

tion. Observed differences between the two methods were

consistently small across all examined regions. Being objec-

tive in nature, the automated approach holds distinct advan-

tages for quantifying choroidal thickness. Automated

segmentation could serve as an important clinical tool for

examining and monitoring changes in choroidal thickness,

particularly in myopia management.
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