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Abstract

Purpose: To discriminate suspect glaucomatous from control eyes using corneal densitometry

based on the statistical modeling of the pixel intensity distribution of Scheimpflug images.

Methods: Twenty-four participants (10 suspect glaucomatous and 14 control eyes) were included

in this retrospective study. Corneal biomechanics was assessed with the commercial Scheimpflug

camera Corvis ST (Oculus). Sets of 140 images acquired per measurement were exported for fur-

ther analysis. After corneal segmentation, pixel intensities corresponding to different corneal

depths were statistically modeled for each image, from which corneal densitometry in the form

of parameters a (brightness) and b (homogeneity) was derived. After data pre-processing,

parameters a and b were input to six supervised machine learning algorithms that were trained,

tested, and compared.

Results: There exists a statistically significant difference in a and b parameters between suspect

glaucomatous and control eyes (both, P < 0.05/N, Bonferroni). From the implemented super-

vised machine learning algorithms, the K-nearest neighbors (K-NN) algorithm reached 83.93%

accuracy to discriminate between groups only using corneal densitometry parameters (a and b).

Conclusion: Densitometry of the anterior cornea including epithelium on its own has the poten-

tial to serve as a clinical tool for early glaucoma risk assessment.

© 2022 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

Glaucoma is a multifactorial eye condition that is the lead-
ing cause of irreversible vision loss.1,2 Until it reaches an
advanced stage, glaucoma is an asymptomatic disease, so
methods of early diagnosis are needed.3 As glaucoma is a
condition that damages the optic nerve, research works aim-
ing toward early glaucoma detection were traditionally

focused on the back of the eye, i.e., optic nerve, lamina cri-
brosa, and retina. However, there exists an increasing inter-
est in investigating the cornea as a target tissue for
glaucoma detection and management. The potential role of
corneal thickness4,5 and corneal biomechanics6,7 in the
assessment of glaucoma risk have been investigated. More
recently, different studies have found statistically significant
differences in corneal densitometry between glaucomatous
and control eyes,7-9 suggesting that corneal densitometry
analysis could have clinical applications in the diagnosis and
management of glaucoma.
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Corneal densitometry is an objective measure of corneal
clarity, and it is an indicator of corneal health.10 Scheimp-
flug-based corneal tomography is considered the gold stan-
dard for corneal densitometry assessment, but, to date, it is
exclusively available on one single commercial device. To
overcome this limitation, our research group introduced a
platform-independent methodology based on the statistical
modeling of the pixel intensity distribution of Scheimpflug
images that correlates very well with traditional densitome-
try (overall cornea, r = 0.89; P < 0.001).11 The method char-
acterizes corneal densitometry with two different
parameters. The first parameter accounts for corneal tissue
clarity, as traditional densitometry does, whilst the second
parameter accounts for corneal tissue homogeneity. This
complete approach toward corneal tissue characterization
has proven high accuracy and precision in early keratoconus
detection,12,13 overpassing the performance of clinically
available systems.12,13 This method also investigated corneal
densitometry in minor corneal hypoxia14 and rare genetic
conditions.15 Moreover, a previous work, based on Optical
Coherence Tomography (OCT), investigated corneal back-
scatter based on the statistical modeling of the pixel inten-
sity distribution of glaucomatous corneas.16 Their results
indicated that glaucoma suspects have similar microstruc-
tural corneal tissue properties to those exhibited in glau-
coma patients but markedly different from that of healthy
controls.16 Consequently, their results suggest that micro
parameters related to corneal tissue integrity might be a
valuable early glaucoma biomarker.

Additionally, machine learning techniques have repeat-
edly shown their usefulness in ophthalmology as an objective
tool to assist practitioners in diagnosing certain condi-
tions.17-19 Glaucoma detection is one of the ocular patholo-
gies where the most efforts regarding machine learning
implementation have been made.17 However, to the best of
the authors’ knowledge, corneal densitometry was not pre-
viously investigated as a valuable feature for suspect glau-
coma detection.

Consequently, the current work aims to investigate
whether corneal densitometry parameters estimated from
statistical modeling of the pixel intensity distribution of
Scheimpflug images, with the support of supervised machine
learning algorithms, can successfully discriminate between
suspect glaucomatous and control eyes.

Methodology

Subjects and data collection

Twenty-four participants (24 eyes) were included in this
study. Data was retrospectively collected from a previous
study.16 The study adhered to the tenets of the Declaration
of Helsinki. Written informed consent was obtained from all
participants. They were adult participants (19 females, 5
males) between 51 and 73 years old. The suspect glaucoma
group (G) consisted of 10 eyes. The remaining 14 eyes served
as the healthy control eyes (C). As age, IOP was similar in
both groups. Participants had an IOP of less than or equal to
18.5 mmHg. As this was a retrospective study, participants
were classified as suspect glaucoma or control according to
the classification done by an experienced ophthalmologist in

the corresponding prospective study.16 In that prospective
study,16 IOP was assessed with Goldmann applanation
tonometry; the optic nerve head, including disc area, rim
area, rim volume, cup shape measure, height variation con-
tour, and the mean thickness of the retinal nerve fiber layer
was examined using Heidelberg Retinal Tomography (HRT 3;
Heidelberg Engineering GmbH, Heidelberg, Germany); visual
field parameters including mean deviation and pattern stan-
dard deviation with Humphrey Field Analyzer II 750, 24-2
Swedish interactive threshold algorithm (Carl Zeiss Meditec,
Inc., Dublin, CA); biometry including the central corneal
thickness, anterior chamber depth, axial length, and kera-
tometry was measured with IOLMaster 700 (Carl Zeiss Medi-
tec, Inc., Jena, Germany). Additionally, all participants
underwent a comprehensive ophthalmological examination,
including corneal biomechanics assessment with the Corvis
ST (Oculus, Wetzlar, Germany), a high-speed dynamic
Scheimpflug imaging system based on mechanical stimula-
tion of the cornea. Exclusively Corvis ST data, including
Scheimpflug images and biomechanical data, were utilized
in the current study. Eyes with suspect glaucoma were
defined as those with glaucomatous optic disc appearance
(i.e., exhibiting disc rim loss or excavation, subjectively
assessed optic disc cupping of >0.6, or localized abnormali-
ties of the retinal nerve fiber layer) but normal visual fields.
None of the suspects were pharmacologically treated for
glaucoma. Healthy controls had healthy optic disc appear-
ance and normal visual field, defined as the absence of glau-
comatous and neurologic field defects. Subjects were
excluded if they had a history of ocular surgery within 12
months before the study or if they were younger than
40 years with corneal or intraocular disease or neurologic
disorders affecting visual fields.

Data analysis

Image processing. Parameters a and b

Corvis ST corneal deformation grayscale images were
obtained every 230 ms and had a fixed size of 576 £ 200 pix-
els, corresponding with an estimated resolution of 14.8 mm/
pixel horizontally and 24 mm/pixel vertically. Examples of
Corvis ST images along the corresponding corneal histograms
are shown in Fig. 1.

After data acquisition, the sets of 140 images acquired
per measurement were exported for further analysis, as
explained in detail in previous work.12 In short, the
method of data analysis consisted of two steps: corneal
segmentation and statistical modeling of the pixel inten-
sity distribution. The axial and lateral dimensions of the
ROI were optimized to maximize the amount of signal-
carrying data or, in other words, to achieve the highest
discriminative power between the investigated groups
(suspect glaucomatous vs. control eyes). As a preliminary
analysis, the horizontal (lateral) dimension of the ROI
was fixed to 160 pixels, corresponding approximately to
the central 2.5 mm corneal chord. Regarding the vertical
(axial) dimension, three different depths were investi-
gated: (1) full corneal thickness, (2) Stroma, and (3)
Anterior cornea including epithelium. Consequently, the
vertical dimension of the ROI depended on the corneal
depth analyzed. Firstly, in the case of considering the
full corneal thickness, the number of vertical pixels in
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the ROI was given by the corneal thickness of each sub-
ject, as it was investigated in previous work that corneal
thickness is not a co-founding factor affecting the statis-
tical analysis of corneal Scheimpflug images.12 Secondly,
when considering the stroma, pixels corresponding to
corneal epithelium were omitted, as they carry different
statistical information compared to those from the
stroma.11 In the third scenario, anterior cornea including
epithelium, a fixed vertical ROI of 8 pixels from the
detected anterior corneal border, approximately corre-
sponding to the anterior 190 mm, was considered.

The intensity of the pixels corresponding to a given
ROI was statistically modeled with the two-parameter
distribution functions that were previously used to model
corneal Scheimpflug images (i.e., Weibull, Gamma, and
Lognormal distributions).12 Output parameters were esti-
mated using the method of maximum likelihood from the
pixel intensities of the selected ROI in each image. The
goodness of fit was assessed by means of the root mean
squared error (RMSE) for the three candidate distribu-
tions, as in previous literature.12

As described in previous work in detail,12 the output of
the candidate two-parameter distribution functions is two
parameters that will be further used to feed the super-
vised machine learning algorithms. These two parameters
are the scale parameter (referred to as a in this work)
and the shape parameter (referred to as b in this work).
Parameter a accounts for corneal clarity (the larger a, the
lesser corneal clarity), while parameter b accounts for
corneal tissue homogeneity (the larger b, the greater cor-
neal tissue homogeneity).14 Parameters a and b can have
any non-zero positive value.

Cases of study and statistical analysis

As mentioned before, different corneal depths (full cor-
nea, stroma, and anterior cornea including the epithe-
lium) and different statistical models (Weibull, Gamma,
and Lognormal distributions) were considered to discrimi-
nate between groups (suspect glaucomatous vs. control
eyes). Mean group values of a(t) and b(t) parameters
under every condition were analyzed. Further, individual
values of a and b corresponding to the statistical model
and corneal depth that would better discriminate
between suspect glaucomatous and control eyes were
used to feed the supervised machine learning classifica-
tion algorithms. In addition, two cases were investigated.
Case 1 included a and b estimated from the 140 frames
available (i.e., 6720 data points = 2 parameters/frame x
140 frames/participant x 24 participants), while case 2
included a and b estimated from the 20 frames range
that showed the best group mean discrimination between
groups (i.e., 960 data points = 2 parameters/frame x
20 frames/participant x 24 participants).

Statistical analysis was performed using Microsoft Office
Excel (Microsoft Office Professional Plus 2016; Microsoft;
Redmond, WA, USA). The normality of each parameter,
including a and b per frame and biomechanical parameters,
was not rejected (Shapiro�Wilk test, P > 0.05). The inde-
pendent two-sample t-test was used to assess differences in
parameters under evaluation between suspect glaucoma
and control groups. The paired two-sample t-test was used
to assess differences in a and b parameters between groups.
The level of significance was set to 0.05, and a Bonferroni
correction was applied to address the problem of multiple
comparisons.

Fig. 1 Corneal Scheimpflug images after segmentation (i.e. without background) of a randomly chosen suspect glaucoma partici-

pant (A, B) and a randomly chosen control participant (C, D); before air-puff (A, C) and during air-puff (B, D). Colour bars indicate

pixel intensity. Scaled histograms corresponding to corneal pixels are shown for each image.
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Machine learning classification algorithms

Machine learning classification algorithms were imple-
mented in Python (version 3.8, Python Software Foundation)
and were based on the scikit-learn data science library
(https://scikit-learn.org). Six supervised algorithms were
implemented and tested: (1) Logistic regression, (2) K-near-
est neighbors (K-NN) with Euclidean distance and K opti-
mized for each case under investigation (Fig. 2), (3) Kernel
support vector machine (SVM) with Gaussian RBF kernel, (4)
Naïve Bayes, (5) Decision tree classification, and (6) Random
forest classification.

The dataset, imported in .csv format, consisted of two
features (a and b) and a labeled output (1 if suspect glau-
coma or 0 if control). In case 1 (140 frames) a total of 3360
instances were used as the dataset, while in case 2 (20
frames) a total of 480 instances were used as the dataset.

The architecture of each supervised algorithm follows the
same pattern. For data pre-processing, after importing the
dataset, missing values were removed. In case 1, 3275
instances remained after missing values depletion (i.e.,
2.5% of the whole dataset which was considered accept-
able). There was no missing data in the dataset correspond-
ing to case 2.

Each dataset was split into the training set (80 % of the
dataset, randomly selected but fixed to train the different
algorithms) and the test set (the remaining 20 % of the data-
set). This is, in case 1 (140 frames), from the 3275 available
instances, a total of 2620 instances were used to train the
algorithms, while the remaining 655 instances were used to
test the performance of the trained algorithms. Similarly, in
case 2 (20 frames), from the 480 available instances, a total
of 384 instances were used to train the algorithms, while the
remaining 96 instances were used to test the performance
of the trained algorithms. Further, feature scaling of a and b

based on the standardization technique was applied to the
test set and the test set separately in both cases under
investigation.

After data pre-processing, each algorithm was trained on
the training set and evaluated using the test set. To investi-
gate for potential overfitting each algorithm was also

evaluated using the training set. The confusion matrix and
the corresponding accuracy (% of correct predictions) were
calculated to assess the performance of each architecture.
In addition to the statistical analysis, the performance of
each test set for each case and architecture was plotted for
illustrative purposes.

Results

Biomechanical parameters

Participants from this study had equivalent mean values of
age, IOP, and CCT, as shown in Table 1. No statistically signif-
icant difference was found in biomechanical parameters
between suspect glaucomatous eyes and control eyes, as
indicated in Table 1.

Statistical analysis of Scheimpflug images

No statistically significant differences were found between
the candidate functions to fit pixel intensity distribution
within the ROI (all pair-wise comparisons, P > 0.05), as
indicated in Table 2. The Weibull distribution was chosen
to fit the pixel intensity distribution in corneal Scheimpflug
images. This choice was motivated for two reasons. One
reason is that the Weibull function reported the smallest
RMSE (Table 2), even though this difference was not statis-
tically significant. The second reason was to maintain con-
sistency with previous literature where the Weibull
distribution function was chosen to fit pixel intensity distri-
bution in corneal Scheimpflug images representing various
corneal pathologies12,13,15 and healthy volunteers.11,14

The mean parameters a(t) and b(t) were good discrim-
inators between suspect glaucoma and control eyes
(Fig. 3), with statistically significant differences for both
a (t) (paired t-test, P < 0.05/N [N = 140, Bonferroni])
and b(t) (paired t-test, P < 0.05/N [N=140, Bonferroni]).
This was a good indicator that a(t) and b(t) could serve
as discriminators between groups. Hence, case 1 of the
study used a(t) and b(t) parameters estimated from 140
frames. However, from the analysis of the three investi-
gated corneal depths and the dynamic evolution of a(t)
and b(t) it was concluded that the best discrimination
between groups was achieved when analyzing the first
frames of the cornea; this is, before mechanical stimula-
tion, as illustrated in Fig. 3. Consequently, individual val-
ues of a(t) and b(t) corresponding to the first 20 frames
of each participant were used as case 2 of the study.

Machine learning classification algorithms

Besides the statistically significant difference achieved in
mean a(t) and b(t) between groups, the individual a(t) and
b(t) parameters represented messy data, as shown in Fig. 4.
Consequently, standard statistics could not help predict
whether a new data point would belong to the suspect glau-
comatous group or the control group. Therefore, supervised
machine learning algorithms needed to be implemented and
tested for both study cases separately.

Figs. 5 and 6 illustrate the performance of the imple-
mented supervised machine learning algorithms. The

Fig. 2 Performance of the KNN algorithm as a function of the

number of K-nearest neighbors chosen. The highest accuracy

was reached with K=8 (83.35% accuracy) for case 1 (140 frames),

and with K=5 (92.71% accuracy) for case 2 (20 frames).
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background of the subplots corresponds to the training
phase, while the data points correspond to the test set. In
other words, suspect glaucomatous eyes (in orange in Figs. 5
and 6) should fall in the orange background while control
eyes (in green in Figs. 5 and 6) should fall in the green back-
ground, otherwise, there is a misclassification. Correspond-
ing statistics are shown in Table 3. The performance of the
algorithms was measured by counting the number of true
negatives (number of control eyes correctly classified as
control eyes), true positives (number of suspect glaucoma-
tous eyes correctly classified as suspect glaucomatous), false
negatives or type II error (number of suspect glaucomatous
eyes wrongly classified as control), false positives or type I
error (number of control eyes wrongly classified as suspect
glaucomatous). Table 4 shows the corresponding statistics
for the training set.

Discussion

Diagnosing early-stage glaucoma is still a clinical challenge.
This study shows that it is possible to discriminate, at over
80 % accuracy, suspect glaucomatous from control eyes using
corneal densitometry parameters (a � corneal tissue clarity,
b � corneal tissue homogeneity) with the support of super-
vised machine learning algorithms (Figs. 5, 6 and Table 3).
The results of the current study are in agreement with those
of Iskander and colleagues.16 Using a similar image process-
ing technique as in the present work, they applied statistical
modeling of the pixel intensity distribution (i.e., speckle

distribution) of commercial OCT images to investigate cor-
neal tissue differences between glaucoma, suspect glau-
coma, and control participants. The parameters of OCT
speckle can be indirectly linked to the microstructural prop-
erties of the imaged tissue.16 Consequently, they showed
that the corneal microstructure of suspect glaucoma partici-
pants is more similar to that of glaucoma than that of control
participants.16

Even though glaucoma primarily affects the optic nerve,
as it is a multifactorial disease challenging to detect early,
there is an increasing interest in investigating the cornea as
a target tissue for glaucoma risk assessment and glaucoma
management. In the current work, no statistically significant
differences were found in any of the biomechanical parame-
ters analyzed between suspect glaucomatous and control
eyes (Table 1). Previous works on corneal biomechanics and
glaucoma found a weak relationship between corneal bio-
mechanical parameters and measures of structural and func-
tional damage in glaucoma.6,7 As these correlations were
weak and only found in developed cases, corneal biome-
chanics does not seem to be an adequate biomarker for early
glaucoma detection. Consequently, biomechanical parame-
ters were not used to feed the supervised machine learning
algorithms in the current work.

Furthermore, recent works suggested that corneal densi-
tometry analysis could have a clinical impact on the diagno-
sis and management of glaucoma.7-9 Inspired by those
previous works, in the current study we investigated corneal
densitometry as an early glaucoma biomarker. However, we
did not use traditional densitometry values estimated from

Table 1 The group statistics for age and biomechanical parameters acquired with Corvis ST: mean values § SD (range).

Parameter Glaucoma suspects (n=10) Control (n=14) P-value

Age 66 § 6 (51, 71) 60 § 7 (48, 73) 0.07

IOP corrected (mmHg) 15.4 § 1.5 (12.6, 17.3) 16.0 § 1.4 (13.5, 19.3) 0.71

IOP non-corrected (mmHg) 15.2 § 1.1 (13.2, 17.0) 16.7 § 1.0 (13.5, 18.2) 0.07

CCT (mm) 543 § 22 (510, 577) 565 § 33 (506, 605) 0.16

A1 � length (mm) 2.2 § 0.3 (1.8, 2.8) 2.2 § 0.3 (1.8, 2.9) 0.90

v1 � velocity (m/s) 0.16 § 0.02 (0.10, 0.19) 0.17 § 0.01 (0.13, 0.17) 0.75

A2 � length (mm) 1.63 § 0.50 (0.86, 2.21) 1.85 § 0.40 (0.98, 2.21) 0.23

v2 � velocity (m/s) �0.33 § 0.07 (�0.43, �0.19) �0.31 § 0.03 (�0.35, �0.25) 0.40

Peak distance (mm) 5.13 § 0.39 (4.3, 5.8) 4.83 § 0.29 (4.17, 5.14) 0.05

Radius of curvature (mm) 7.17 § 0.50 (6.58, 8.07) 7.54 § 0.75 (6.32, 8.81) 0.24

Maximum deformation amplitude (mm) 1.18 § 0.15 (0.95, 1.42) 1.08 § 0.10 (0.86, 1.2) 0.07

Table 2 The goodness of fit in terms of RMSE of the different candidate models to fit corneal pixel intensity distribution,

expressed in arbitrary units, for 10 suspect glaucomatous eyes and 14 control eyes.

Model

Weibull Gamma Lognormal

Full cornea Control 0.032 § 0.001 0.032 § 0.001 0.033 § 0.001

Suspect glaucoma 0.027 § 0.001 0.027 § 0.001 0.027 § 0.001

Stroma Control 0.080 § 0.002 0.081 § 0.002 0.081 § 0.002

Suspect glaucoma 0.075 § 0.003 0.075 § 0.004 0.075 § 0.004

Anterior cornea (including epithelium) Control 0.027 § 0.001 0.028 § 0.001 0.031 § 0.004

Suspect glaucoma 0.021 § 0.001 0.022 § 0.001 0.022 § 0.002
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Pentacam HR software (Oculus, Wetzlar, Germany). Instead,
we used Scheimpflug images acquired with Corvis ST. This
choice was motivated by the fact that Corvis ST, in opposi-
tion to Pentacam HR, allows exporting raw images. In addi-
tion, Corvis ST, again contrarily to Pentacam HR, captures
Scheimpflug images during the dynamic evolution of the cor-
nea under mechanical stimulation, which allows a more
complete analysis of corneal tissue. However, Corvis ST soft-
ware does not include a corneal densitometry module. Con-
sequently, this study applied an alternative method to
traditional densitometry, already validated on corneal
Scheimpflug images under mechanical stimulation.20

The method used in the current work to estimate corneal
densitometry is based on statistical Weibull modeling of the
pixel intensity distribution. Besides giving information on
corneal tissue clarity (a parameter), as traditional densi-
tometry does, it offers additional information on corneal
tissue homogeneity (b parameter). In previous works

investigating corneal densitometry by means of statistical
modeling of the pixel intensity distribution, the epithe-
lium was removed,12-14,20 as it is known to carry different
statistical information compared to the stroma11 and was
therefore considered a potential source of noise. Corneal
densitometry is based on light backscatter. As the corneal
epithelium and corneal stroma have a different composi-
tion, it is expected that light will travel, and consequently
scatter, differently in one tissue or the other. Actually,
from any standard corneal Scheimpflug image, it is possi-
ble to observe bare eye a thin bright layer on the anterior
cornea corresponding to the epithelium, while the stroma
shows a darker and more uniform appearance. These inner
tissue differences justify that when only the stroma was
considered, smaller values of a(t) and larger values of b(t)
were obtained in the current study, in comparison to the
case when the anterior cornea, including the epithelium,
was analyzed, as shown in Fig. 3.

Fig. 3 Mean values of the dynamic evolution of a(t) and b(t) parameters, expressed in arbitrary units, extracted from the fitting of

Weibull distribution to the pixel intensities of corneal Scheimpflug images for 10 suspect glaucoma participants (orange) and 14 con-

trol participants (green). The analysis was done for different vertical (axial) dimensions of the ROI, considering: full corneal thickness

(above), stroma excluding the epithelium (middle), and anterior cornea including the epithelium (bottom). Zoom-in is shown in those

frames where group differences in a(t) are the largest. Corresponding frames in b (t) are also shown. Corresponding individual data

points to the zoomed area were used in case 2 (20 frames). Error bars: SE at 95% confidence level.
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In the current study, three different corneal depths were
investigated. Various reports have shown that certain glau-
coma medications cause alterations in the corneal eye
surface.21,22 However, glaucoma is a pathology that does not
affect the cornea directly. Consequently, it is not straight-
forward to predict which corneal depth would be optimal to
discriminate the disease. In the current work, the largest
separation between suspect glaucomatous and control eyes
in the a(t) parameter was found when considering the ante-
rior cornea, including the epithelium. This result shows that
even though pixels corresponding to the epithelium carry
different statistical information compared to those from the

stroma,11 this information might be of value in cases where
the discrimination between groups is especially challenging.

In the current research, the group mean parameters a(t)
and b(t) were good discriminators between suspect glau-
coma and control eyes (Fig. 3), with statistically significant
differences for both a (t) (paired t-test, P < 0.05/N
[N = 140, Bonferroni]) and b(t) (paired t-test, P < 0.05/N
[N=140, Bonferroni]). However, when looking at individual
values of a(t) and b(t) parameters, discriminating suspect
glaucomatous eyes from control eyes became challenging,
as illustrated in Fig. 4. However, the combination of these
two parameters, a(t) and b(t), resulted in a successful way

Fig. 4 The complete dataset that was used to feed the different supervised machine learning algorithms in each case under investi-

gation. Data points in case 1 correspond to the a(t) and b(t) parameters, expressed in arbitrary units, estimated from the 140 frames

available for each subject (3275 data points in total, after removing missing values). Data points in case 2 correspond to the a(t) and

b(t) parameters, expressed in arbitrary units, estimated from the first 20 frames collected for each subject (480 data points). For

both cases: 10 suspect glaucomatous eyes (G, in orange at 60% transparency) and 14 control eyes (C, in green).

Fig. 5 Graphical representation of the performance of the different supervised machine learning algorithms in case 1 (140 frames).

Background colors represent the output of the training step, while the 655 data points correspond to the test set (i.e., 20% of the

total dataset that was not used for training). To clarify, suspect glaucomatous eyes (G, in orange) should fall in the orange background

while control eyes (C, in green) should fall in the green background, otherwise, there is a misclassification. Corresponding statistics

are shown in Table 3.
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to discriminate between suspect glaucomatous and control
eyes (Figs. 5, 6, and Table 3) using supervised machine learn-
ing algorithms.

In the machine learning part of the study, two different
situations were investigated, case 1 (140 frames, 3360
instances) and case 2 (20 frames, 480 instances). The algo-
rithms that showed the best performance were K-nearest
Neighbors (case 1) and Decision Tree Classification (case 2).
However, as indicated by Table 4, overfitting occurs in the
Decision Tree Classification algorithm and consequently
should not be considered a good classifier. Overfitting hap-
pens when there is a significant difference in accuracy
between training and test sets. Overfitting is undesirable as
it implies a lack of generalization beyond the training set.
Overfitting is one of the main limitations of Decision Tree
Classification and Random Forest Classification algorithms.17

Regularization techniques can be applied to solve or mini-
mize overfitting as a part of pre-processing. However, this
goes beyond the scope of the current study. Consequently,
considering the performance on the training set for cases 1
& 2, and the non-overfitting algorithms, K-NN is the classifier
that reached the best performance in the current work
(83.93 % accuracy in case 1 and 92.7 % in case 2). K-NN is a
supervised algorithm based on the principle that instances
of a given dataset generally reside near other instances with
similar characteristics.17 The advantages of K-NN include
simplicity, speed, and easiness of implementation. The dis-
advantages of K-NN include not working well with too large
datasets or with high dimensions.18 However, these general
disadvantages do not apply to the current work, since the
dataset used in the training phase was not too large and we
were working in two dimensions (only two parameters, a

and b, were used to feed the algorithm). Consequently, as

the inherent disadvantages of the algorithm were mini-
mized, especially regarding dimensionality, we speculate
this might be the reason the K-NN algorithm scored the high-
est (83.93 % accuracy in case 1 and 92.7 % in case 2).

The main limitation of the current work is the limited
sample size. Twenty-four eyes are enough to investigate
group means of a(t) and b(t) parameters and traditional sta-
tistics can be applied to successfully discriminate between
groups, as it was shown in the current work and previous lit-
erature.20 However, by definition, machine learning techni-
ques need to learn from a large dataset to be later efficient
and achieve high performance. Consequently, 24 eyes is not
a sample size large enough to directly apply supervised
machine learning methods. To overcome this limitation,
instead of using a single a and b per eye (24 instances), we
used the complete data available, this is, calculating a and
b per eye and frame. Two cases were investigated, case 1
(140 frames, 3360 instances) and case 2 (20 frames, 480
instances). When only considering the 20 first frames, case
2, the highest performance was obtained (92.7 % accuracy),
as indicated by Table 3. However, as this data is clustered,
as shown in the right part of Fig. 4, this result might be sub-
jected to overfitting. However, in case 1, the performance is
still high (83.93 %) and would not be so strongly affected by
overfitting. It is also worth mentioning that data quality is
often more critical than data quantity to implement a super-
vised machine learning algorithm successfully.23 Dirty data,
i.e., inaccurate, incomplete, or inconsistent data, often
leads to misclassifications.23 In the current work, we fed
the machine learning algorithms with only two parameters
(a and b) that proved to be independent and statistically sig-
nificant different between control and suspect glaucoma
eyes according to traditional statistics. Using clean and

Fig. 6 Graphical representation of the performance of the different supervised machine learning algorithms in case 2 (20 first

frames). Background colors represent the output of the training step, while the 96 data points correspond to the test set (i.e., 20% of

the total dataset that was not used for training). To clarify, suspect glaucomatous eyes (G, in orange) should fall in the orange back-

ground while control eyes (C, in green) should fall in the green background, otherwise, there is a misclassification. Corresponding sta-

tistics are shown in Table 3.
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Table 3 Performance of the trained supervised algorithms on the test set (20% of the whole dataset, i.e., 655 data points in case 1 (140 frames) and 96 data points in case 2 (20

first frames)). Performance was assessed by the number of true negatives (TN), true positives (TP), false negatives (FN), false positives (FP), accuracy, area under the curve (AUC),

and 95% confidence interval (CI). The last column (#) orders the algorithms from best performance (1) to worse performance (6).

Case Algorithm TN TP FN FP TN (%) TP (%) FN (%) FP (%) Accuracy (%) AUC CI #

140 frames Logistic Regression 316 164 76 99 48 25 12 15 73.28 0.71 [0.70,0.77] 5

K-nearest Neighbors (K=8) 348 198 44 65 53 30 7 10 83.34 0.82 [0.81,0.86] 1

Kernel Support Vector Machine 340 166 52 97 52 25 8 15 77.25 0.75 [0.74,0.81] 4

Naïve Bayes 326 126 66 137 50 19 10 21 69.00 0.67 [0.67,0.73] 6

Decision Tree Classification 327 188 65 75 50 29 10 11 78.63 0.77 [0.76,0.82] 3

Random Forest Classification 340 179 52 84 52 27 8 13 79.24 0.77 [0.76,0.82] 2

20 first frames Logistic Regression 49 28 10 9 51 29 10 9 80.2 0.79 [0.72,0.88] 5

K-nearest Neighbors (K=5) 53 36 6 1 55 38 6 1 92.7 0.94 [0.88,0.98] 2

Kernel Support Vector Machine 49 27 10 10 51 28 10 10 79.2 0.78 [0.71,0.87] 6

Naïve Bayes 54 28 5 9 56 29 5 9 85.4 0.84 [0.78,0.93] 4

Decision Tree Classification 54 36 5 1 56 38 5 1 93.8 0.94 [0.89,0.99] 1

Random Forest Classification 53 36 6 1 55 38 6 1 92.7 0.94 [0.88,0.98] 2

Table 4 Performance of the trained supervised algorithms on the training set (80% of the whole dataset, i.e., 2620 data points in case 1 (140 frames) and 383 data points in case 2

(20 first frames)). Performance was assessed by the number of true negatives (TN), true positives (TP), false negatives (FN), false positives (FP), accuracy, and area under the curve

(AUC). Corresponding statistics on the test set are shown in Table 3.

Case Algorithm TN TP FN FP TN (%) TP (%) FN (%) FP (%) Accuracy (%) AUC

140 frames Logistic Regression 1521 1099 0 0 58 42 0 0 100 100

K-nearest Neighbors (K=8) 1416 783 105 316 54 30 4 12 83.93 0.82

Kernel Support Vector Machine 1342 625 179 474 51 24 7 18 75.08 0.73

Naïve Bayes 1288 505 233 594 49 19 9 23 68.43 0.65

Decision Tree Classification 1521 1099 0 0 58 42 0 0 100 100

Random Forest Classification 1521 1099 0 0 58 42 0 0 100 100

20 first frames Logistic Regression 221 162 0 0 58 42 0 0 100 100

K-nearest Neighbors (K=5) 212 150 6 2 57 41 2 1 94.52 0.94

Kernel Support Vector Machine 205 108 16 54 54 28 4 14 81.72 0.78

Naïve Bayes 214 110 7 52 56 29 2 14 84.60 0.82

Decision Tree Classification 221 162 0 0 58 42 0 0 100 100

Random Forest Classification 221 162 0 0 58 42 0 0 100 100
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meaningful data, as it was done in the current work, enhan-
ces the performance and robustness of the training algo-
rithms.23 Nevertheless, future works should repeat the
investigation here presented with a larger sample size.

The current study showed that it is possible to extract
valuable information from the anterior cornea, including
the epithelium, to discriminate suspect glaucomatous from
control eyes with 83.93% accuracy. Even though more work
needs to be done, with a larger sample size, the presented
results shed some light on the investigation of corneal tissue
as a clinical tool for early glaucoma detection and glaucoma
management. In conclusion, corneal densitometry on its
own has the potential to serve as a biomarker for early glau-
coma risk assessment.

Conflicts of interest

The authors report no conflicts of interest and have no pro-
prietary interest in any of the materials mentioned in this
article.

Acknowledgements

The authors thank Professor D. Robert Iskander from Wro-
claw University of Science and Technology (Poland) for shar-
ing their data.

References

1. Giangiacomo A, Coleman AL. The Epidemiology of Glaucoma.

Glaucoma. Berlin, Heidelberg: Springer; 2009:13�21.
2. McMonnies CW. Glaucoma history and risk factors. J Optom.

2017;10(2):71�78.

3. C�anovas-Serrano Y, Vall�es-San-Leandro L, Rodríguez-Izquierdo

M�A, L�opez-Serrano R, Lajara-Blesa J. On the protective role of
the blood vessels in glaucomatous damage: a transversal study.

J Optom. 2021.

4. Chauhan BC, Hutchison DM, LeBlanc RP, Artes PH, Nicolela
MT. Central corneal thickness and progression of the visual

field and optic disc in glaucoma. Br J Ophthalmol. 2005;89

(8):1008�1012.

5. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as
a risk factor for advanced glaucoma damage. Arch Ophthal.

2004;122(1):17�21.

6. Mansouri K, Leite MT, Weinreb RN, Tafreshi A, Zangwill LM,

Medeiros FA. Association between corneal biomechanical prop-
erties and glaucoma severity. Am J Ophthalmol. 2012;153

(3):419�427.

7. Morales-Fern�andez L, Benito-Pascual B, P�erez-García P, Peru-
cho-Gonz�alez L, S�aenz-Franc�es F, Santos-Bueso E, García-Bella

J, S�anchez-Jean R, García-Feijoo J, Martínez-de-la-Casa JM.

Corneal densitometry and biomechanical properties in patients

with primary congenital glaucoma. Can J Ophthalmol. 2021;56
(6):364�370.

8. Morales-Fern�andez L, Perucho-Gonz�alez L, Martinez-de-la-Casa

JM, Perez-Garcia P, S�aenz-Franc�es F, Benito-Pascual B, Nieves-
Moreno M, García-Bella J, Arriola-Villalobos P, García-Feijoo J.

Corneal densitometry and topography in patients with primary

congenital glaucoma. J Fr Ophtalmol. 2020;43(8):697�703.

9. Molero-Senosiain M, Morales-Fernandez L, Saenz-Frances F,
Perucho-Gonzalez L, García-Bella J, Garcia Feijoo J, Martinez-

de-la-Casa JM. Corneal properties in primary open-angle glau-

coma assessed through scheimpflug corneal topography and

densitometry. J Glaucoma. 2021;30(5):444�450.
10. Otri AM, Fares U, Al-Aqaba MA, Dua HS. Corneal densitometry as

an indicator of corneal health. Ophthalmology. 2012 Mar;119

(3):501�508.

11. Consejo A, Jim�enez-García M, Rozema JJ. Age-related corneal
transparency changes evaluated with an alternative method to

corneal densitometry. Cornea. 2021;40(2):215�222.

12. Consejo A, Solarski J, Karnowski K, Rozema JJ, Wojtkowski M,
Iskander DR. Keratoconus detection based on a single Scheimp-

flug image. Transl Vis Sci Technol. 2020;9(7):36.

13. Consejo A, Jim�enez-García M, Issarti I, Rozema JJ. Detection of

subclinical keratoconus with a validated alternative method to
corneal densitometry. Transl Vis Sci Technol. 2021;10(9):32.

14. Consejo A, Alonso-Caneiro D, Wojtkowski M, Vincent SJ. Corneal

tissue properties following scleral lens wear using Scheimpflug

imaging. Ophthalmic Physiol Opt. 2020;40(5):595-606.
15. Tack M, Kreps EO, De Zaeytijd J, Consejo A. Scheimpflug-based

analysis of the reflectivity of the cornea in Marfan syndrome.

Transl Vis Sci Technol. 2021;10(9):32.
16. Iskander DR, Kostyszak MA, DA Jesus, Majewska M, Danielewska

ME, Krzyzanowska-Berkowska P. Assessing corneal speckle in

optical coherence tomography: a new look at glaucomatous

eyes. Optom Vis Sci. 2020;97(2):62�67.
17. Consejo A, Melcer T, Rozema JJ. Introduction to machine learning

for ophthalmologists. Semin Ophthalmol. 2019;34(1):19�41.

18. Vercio LL, Amador K, Bannister JJ, Crites S, Gutierrez A, Mac-

Donald ME, Moore J, Mouches P, Rajashekar D, Schimert S, Sub-
banna N. Supervised machine learning tools: a tutorial for

clinicians. J Neural Eng. 2020;17(6): 062001. 19.

19. Issarti I, Rozema JJ. Basics of artificial intelligence for ophthal-

mologists. Artificial Intell Ophthalmol. 2021:17�30. Springer,
Cham.

20. Consejo A, G»awdecka K, Karnowski K, Solarski J, Rozema JJ,

Wojtkowski M, Iskander DR. Corneal properties of keratoconus
based on Scheimpflug light intensity distribution. Invest Oph-

thalmol Vis Sci. 2019;60(8):3197�3203.

21. Mastropasqua R, Agnifili L, Fasanella V, Lappa A, Brescia L, Lan-

zini M, Oddone F, Perri P, Mastropasqua L. In vivo distribution of
corneal epithelial dendritic cells in patients with glaucoma.

Invest Ophthalmol Vis Sci. 2016;57(14):5996�6002.

22. Noecker RJ, Herrygers LA, Anwaruddin R. Corneal and conjunc-

tival changes caused by commonly used glaucoma medications.
Cornea. 2004;23(5):490�496.

23. Qi Z, Wang H, Li J, Gao H. Impacts of dirty data: and experimen-

tal evaluation. arXiv preprint arXiv:1803.06071. 2018 Mar 16.

S21

Journal of Optometry 15 (2022) S12�S21

http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0001
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0001
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0001
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0002
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0002
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0002
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0003
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0004
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0004
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0004
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0004
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0004
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0005
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0005
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0005
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0005
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0006
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0006
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0006
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0006
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0006
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0007
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0008
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0009
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0010
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0010
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0010
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0010
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0011
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0011
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0011
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0011
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0011
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0012
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0012
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0012
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0013
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0013
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0013
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0013
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0015
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0015
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0015
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0016
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0016
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0016
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0016
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0016
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0017
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0017
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0017
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0018
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0018
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0018
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0018
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0019
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0019
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0019
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0019
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0020
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0021
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0021
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0021
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0021
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0021
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0022
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0022
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0022
http://refhub.elsevier.com/S1888-4296(22)00060-7/sbref0022

	Suspect glaucoma detection from corneal densitometry supported by machine learning
	Introduction
	Methodology
	Subjects and data collection
	Data analysis
	Image processing. Parameters α and β
	Cases of study and statistical analysis

	Machine learning classification algorithms

	Results
	Biomechanical parameters
	Statistical analysis of Scheimpflug images
	Machine learning classification algorithms

	Discussion
	Conflicts of interest
	Acknowledgements
	References


