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Abstract

Purpose: To propose and evaluate Complex Zernike polynomials (CZPs) to represent general
wavefronts with non uniform intensity (amplitude) in free-from transmission pupils.

Methods: They consist of three stages: (1) theoretical formulation; (2) numerical implementation;
and (3) two studies of the fidelity of the reconstruction obtained as a function of the number of
Zernike modes used (36 or 91). In the first study, we generated complex wavefronts merging wave
aberration data from a group of 11 eyes, with a generic Gaussian model of the Siles-Crawford
effective pupil transmission. In the second study we simulated the wavefront passing through
different pupil stop shapes (annular, semicircular, elliptical and triangular).

Results:. The reconstructions of the wave aberration (phase of the generalized pupil function)
were always good, the reconstruction RMSerror was of the order of 10~*wave lengths, no matter
the number of modes used. However, the reconstruction of the amplitude (effective transmission)
was highly dependent of the number of modes used. In particular, a high number of modes is
necessary to reconstruct sharp edges, due to their high frequency content.

Conclusions. CZPs provide a complete orthogonal basis able to represent generalized pupil
functions (or complex wavefronts). This provides a unified general framework in contrast to the
previous variety of ad oc solutions. Qur results suggest that complex wavefronts require a higher
number of CZR, but they seem especially well-suited for inhomogeneous beams, pupil apodization,
etc.
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Representacion de frentes de onda en pupilas con transmision no uniforme
mediante polinomios de Zernike complejos

Resumen

Objetivo: Proponer y evaluar los polinomios de Zernike complejos (CZP) para representar frentes
de onda de intensidad (amplitud) no uniforme a través de pupilas con cualquier tipo de transmi-
sion.

Meétodos: Consisten en tres etapas: a) formulacion teérica; b) implementacién numérica, y c¢) rea-
lizacién de dos estudios evaluando la fidelidad de las reconstrucciones obtenidas en funcién del
numero de modos de Zernike usados (36 0 91). En el primer estudio generamos frentes de onda
complejos usando aberraciones de onda reales de un grupo de 11 ojos, e incorporando (en todos
los casos) un modelo genérico gaussiano de la transmision efectiva a través de la pupila debida al
efecto Siles-Crawford. B segundo estudio consistio en simular el frente de onda a través de aper-
turas de diferentes formas (anular, semicircular, elipticay triangular).

Resultados: La reconstruccién de la aberracion de onda (fase de la funcién pupila generalizada)
fue satisfactoria en todos los casos; el error RMSfue siempre del orden de 10~ longitudes de onda,
independientemente del nimero de modos usados. La reconstruccion de la amplitud (transmi-
sién), sin embargo, es muy dependiente de la complejidad del frente de ondasy del nimero de
modos usados. En particular, se necesitan muchos modos de Zernike para reconstruir los bordes
abruptos de las aperturas, debido a su elevado contenido en altas frecuencias espaciales.
Conclusiones. Los CZP constituyen una base completa ortogonal capaz de representar funciones
pupila generalizadas (o frentes de onda complejos). Esto proporciona un marco general, en contra
de la variedad de soluciones ad oc propuestas previamente. Los resultados muestran que si
aumenta la complejidad del frente de onda estambién necesario incrementar el nimero de mo-
dos. En este sentido, los CZP parecen especialmente interesantes para frentes de onda inhomogé-
neos, pupilas apodizadas, etc.

© 2011 Sanish General Council of Optometry. Publicado por Elsevier Espana, SL. Todos los derechos

reservados.

Introduction

The Zernike polynomial (ZP) expansion is widely used in
optics because ZPs form a complete orthogonal basis on a
circle of unit radius. Snce many optical systems have a
circular pupil, ZP expansion can be used to describe any real
function at the pupil plane, such asthe phase of a wavefront
or the wave aberration. They are on the basis of many
applications from optical design and testing, "> wavefront
sensing, ® adaptive optics, * wavefront shaping,® corneal
topography, © etc.

In all these applications the main assumption is that the
pupil (wavefront) or surface (topography) has a circular
shape. However, in the human eye, the pupil may not be
exactly circular, for example for peripheral visual angles,
and its effective transmission is not constant but
approximately Gaussian due to the wave guiding optical
properties of the photoreceptors (Siles-Crawford effect,
SCE).” In other words, the array of retinal photoreceptorsis
the last component of the optical system of the eye with a
relevant impact on image and visual quality. In addition,
there are many situations (visual testing, training, laser
treatments, etc.) in which artificial pupil stops or special
illumination, or simple vignetting modify the shape of the
natural pupil. Most common artificial stops are circular,
annular or semicircular, but one can find cases where the
effective pupil can have almost any possible form. Many
eyes display irregular pupil shapes or may present internal

occlusions. Furthermore, the problem of representing
free-form transmission pupils appearsin any lens or optical
system when working off-axis, especially for wide angle
optics such as that of the eye. Not only the pupil is not
circular, but its shape (eccentricity) changes with visual
field and its orientation changes with meridian. The problem
or representing the change of low and high order aberrations
across the 2-dimensional visual field in a compact and
homogeneous way still lacks a proper solution. Several
solutions were proposed in literature for particular cases.
For instance, Zernike annular polynomials were introduced
to deal with annular stops.?®° Affine (linear) transformations
applied to circular pupils (and Zernike polynomials) permit
to compute the effects of rotations, translations or
two-dimensional scaling™ to pass from circular to elliptical
geometries™ and vice versa. It is also possible to
orthogonalize Zernike polynomials for general aperture
shapes. 12

Adifferent but related issue isthe case of inhomogeneous
transmission pupils, or inhomogeneous illumination beams,
or a combination of both. In the human eye, the SCE means
that the effective pupil transmission of the eye is
approximately Gaussian.” Modern light sources such as
lasers, LEDs, or new optical elements such as axicons
proposed to compensate prebyopia'® produce with
inhomogeneous amplitude wavefronts: Gaussian, Bessel or
associated beams. '“'® Nowadays apodized multifocal
intraocular lenses (with inhomogeneous pupil transmission®)
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may offer improved performance over standard IOLs after
cataract surgery. '’

This brief overview suggests a wide potential field of
application of a proper description of general complex
wavefronts, with free-amplitude and free-phase
distributions. The purpose of this work isto study the
ability of CZPs to represent these general complex
wavefronts in human eyes. To this aim we study two
different cases: First the Siles-Crawford apodization as an
example of inhomogeneous pupil transmission (or
inhomogeneous amplitude). Thisis especially relevant as
thisis an intrinsic property of the optical system of the
eye, and also because methods such as laser ray tracing
can measure both the amplitude (from the relative
intensity of spots) and phase (from the centroid of spots)
of the wavefront.'® Second we study different types of
pupil apertures. As we said above, there exist effective ad
hoc solutions even for general pupil shapes. '2 Also for
inhomogeneous transmission the standard approach isto
use two separate real functions for T and W. In this
context, there are two main potential benefits of using
CZPs. On the one hand, they provide a unified and
generalized solution for a wide variety of pupil shapes and
transmissions, since the CZPs form a complete orthogonal
basis able to represent any complex wavefront in
monochromatic light. The only constraint imposed to the
wavefront is that it has to be fully contained within a
“reference” circle. On the other hand, as we discuss in
Section 4, the generalized Nijboer-Zernike (N-Z) approach
permits one to use the same set of coefficientsto describe
both the wavefront and the amplitude spread function
(image quality), by simply changing the basis functions. 192
Thismay be especially relevant in visual opticsapplications.
In fact, Braat and co-workers?' introduced CZPsto compute
PSFs using the generalized N-Z theory.

Complex zernike polynomials

From now on we will consider a monochromatic wavefront
at the pupil plane described as a generalized pupil function
(amplitude and phase) of spatial polar coordinates:

Rp,0) = T(p, 0)s"(p, 6) (1

This complex function is defined within a circle of unit
radius, which means that the radial coordinate p = r/Ris
normalized by the pupil radius Rof a reference circle which
contains the wavefront. T represents the wavefront
amplitude, or effective pupil transmission and kWis the
phase, where W(p, 6) isthe wave aberration and kisthe wave
number.

Basic formulation

Let usstart with a brief review of the formulation of Zernike
polynomials. The expression for the real polynomialsis (ANS
780.28 standard) within the circle of unit radiusis:

27(p,0) :{Nn" R (p)cos mo for m>0 } @

—N"R™ (p)sin mo for m<0

where p, 6 are polar coordinates, and the radial part is given
by:

R (p) = Ay(p) =
<H2mi)r2 (—1)S (n—s)!
S 910.5(n+|m)—g![0.5(n—| m)—g

o —2s (3)

A normalization factor is included to guarantee
orthonormality:

_[2(N+1)
A e

(4)

The complex version can be obtained by considering
couples of polynomials with angular frequencies +m and
—m, corresponding to the real and imaginary parts
respectively. After the required normalization by a factor
\2 it is straightforward to arrive to the expression for the
complex ZPs.

1 .
G (p,6) =— Ny Ay (p)e™ 5
5 (5
Thismeansthat we construct a couple of a complex Cand
its conjugated C* (or couple of +m, —m) from its respective
couple of +m, —mreal Zpolynomials:

am = % (an/ —iZj’”/) and

1 .
Gnm/‘: Cn—,lm/:_ (an/ + Z;,lm/)
2 : (6)

To recover the real polynomials we only need to take the
real and imaginary parts:

Z7 = Re(Gy) = Fe(G/™) and Z/™ =—m(G) = m(G¢™) (7)

Figure 1 shows some examples of the amplitude and phase

1
of the CZPs. Note that the amplitude E Nrabs(R?(p)) only

depends on radius, whereas the phase term sign(F(p)) €™ is
a function of both coordinates (p,0) (the phase is a pure
angular frequency only for m= nthat is when Ris always
positive, such as for Cj).

Representation of real and complex functions

The classical expansion of a real function, such asthe wave
aberration Win termsof ZPsis

W=3 arzor ¥ bpcr (8)

where a are real and b? are complex coefficients
respectively. Note that in the complex expansion the
polynomials are conjugated. It isimmediate to show that
for real functions, the complex coefficients can be computed
from the real ones:
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Amplitude Phase

Figure 1
Zernike polynomials. The three examples correspond to C,, G
and G, respectively.

Amplitude (left) and phase (right) of complex

an + ja;tm am —ia;™

pim = and b;tm = pm =L ——" 9
5 N (9)
And conversely,
br + by
am =——"— =\2Re(b?) and
N (b7) o
pm —p—tm
gfm=———"—=~2Im(b}"
N (by™)

As a consequence of these expressions, for real functions
b;m= b the coefficients with —m and +m are conjugated,
which meansthat they are not independent (but redundant).
Thisis a general property of thistype of expansions, such as
complex Fourier series, etc. Therefore, it istotally equivalent
to use real or complex versions of ZPs to represent wave
aberrations (or real functionsin general), and Egs. 9 and
10 permit to pass from the real to the complex basis and
conversely. However, these relations do not hold for complex
functionsin general.

For complex wavefronts, we simply combine Egs. 1, 5 and
8 to obtain:

Rp.0) =% by NoRY (p)e=™ (1)

,m

1
=X by—
B
where b? are the complex coefficients of the expansion.

Note the negative sign in e to take into account the
complex conjugation C. The real coefficients a are not

defined in this case. Nevertheless, when Wis given as an
expansion of real ZPs it is straightforward to express the
relationship between the real and complex coefficients:

S bpCy = Tip, )6 or (123)
s @z ="t In(S b0yl 1 S 60y ) (12b)

For practical implementation we will assume a limited
number of coefficients and sampling pointsin the wavefront,
so that these equations can be expressed in vector-matrix
notation (see next Section).

Implementation and results

Numerical methods

In the numerical implementation, we work with discrete
(sampled) wavefronts so that the continuous expressions
translate into a matrix-vector formulation. We applied a
square sampling grid, and took 3720 points within a circle
(34 samples along its radius.) The samples of the complex
wavefront were arranged as the 3720 components of a
column vector p. In the series expansion of Eq. 11, we
considered two cases with maximum order n=7, that is
36 polynomials or modes, and n= 12, which means 91 modes.
In each case we constructed a complex matrix C, of
3720 x 36 and 3720 x 91 respectively. Then, Ey. 11 becomes
p = Cob where b is another column vector formed by either
36 or 91 complex coefficients. To compute the coefficientsb
of the expansion we applied a standard least squares fit to
this strongly oversampled set. Thisis equivalent to apply
the pseudoinverse of Cto the data:

b= (C'C)~C'p (13)

Note that Eq.12a means that vector p =t.€*2, where the
dot product means element by element. Conversely
a= " (Z27Z(InCo —In| Ch| ).

k

Stiles-Crawford apodization

The first numerical study consisted of representing the
generalized pupil function (Eq. 1) of a group of 11 human
eyes with CZPs with a variety of pupil sizes and RMS
wavefront errors. The experimental wave aberration data
(W) were taken from a previous study, > whereas a generic
Gaussian model” was used to describe the amplitude for all
eyes:

7'(p’ 6) = 1040407r2/2 (14)

where the argument isdivided by 2 to passfrom intensity to
amplitude. (Note r is the physical radial coordinate is
r=pRin mm.) The quality of reconstructions with CZPs is
high for most eyes. The RMSerror for the wave aberration
(phase) is of the order of 10~* wavelengthsin all cases. The
average is5x 10+ 2 x 10 A both for 36 and 91 modes
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Amplitude Phase

Amplitude Phase

Figure 2 Reconstructions of the amplitude (left) and phase
(right) of the wavefront for subject JAOD: with 36 complex
Zernike modes (upper panels) and with 91 modes (central
panels) and original (lower panels, - modes) wavefront.

reconstructions, which is well below the sensitivity of
experimental aberrometers. For the amplitude the RMS
error improves with the number of complex Zernike
modes used. For reconstructions with 36 complex modes
(up to 7th order), the average RMSerror (11 eyes) was
1.6 x 102 £ 1.8 x 1072 pupil transmittance. The maximum
reconstruction error (worst case) was 4.7 x 1072 for subject
RN (OD) who also had the largest pupil diameter 6.5 mm and
the largest wave aberration 0.5 wm RMS The minimum error
(best case) was 2.8 x 1072 for subject JA (OD) who had the
smaller pupil, 4.5 mm, and only 0.1 um RVSwave aberration.
When we increase the number of modesto 91 (up to 12th
order), the phase reconstruction does not improve
significantly (as it was already good for 36 modes), but the
amplitude improves so that the average RMSreconstruction
error isone order of magnitude lower 1.6 x 102 £2.6 x 10~®
now. The values for the same worst and best cases also
improves, being 7.1 x 10~% for RN (OD) and 3.7 x 1075 for JA
(OD). Figs. 2 and 3 show the original and reconstructed
amplitude (left panels) and phase (right panels)
corresponding to these two best (JA) and worst (RN) cases,
respectively. In these and following figures, the upper row
corresponds to the reconstruction with 36 modes; the
central row to that obtained with 91 modes; whereas the
bottom row showsto the ideal case, labeled with « to mean

Figure 3 Reconstructions of the amplitude (left) and phase
(right) of the wavefront for subject RN OD. Original and
reconstructions asin Fig. 2.

the exact result expected when the series are not truncated
(in fact label « correspond to the initial data, Tand W
respectively). The reconstructions look visually
indistinguishable from the original when the error is clearly
below 1072, which is always the case for phase. On the
contrary, the amplitude display clearly visible differences
with the original in several 36 modes reconstructions (see
Fig. 3 upper row). These eyes (3 out of 11) have larger pupils
and larger higher order aberrationsthan the mean.

In summary, CZPs seem able to represent the generalized
pupil function (amplitude and phase simultaneously) of
human eyes. Nevertheless, for large pupils, since the
amount of higher order aberrationsis usually large too, it is
necessary to use more complex modes (higher orders) to
obtain an accurate representation.

Free-form pupil stops

The next study consisted in numerical simulations. Here we
considered three different wavefront aberrations: (1) one
wavelength (\) of pure spherical aberration W=2; (2) 1 \
of pure coma W= Z, and (3) one example of ocular wave
aberration taken from the above study. In this case the pupil
transmission is binary. Thismeansthat we consider different
pupil stop shapes within the reference circle, and the
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Amplitude Phase

Figure 4 Reconstruction of a wavefront with one lambda of
pure coma Z; through an annular aperture. Original and
reconstructions asin Fig. 2.

transmission is assumed to be one (maximum) within the
aperture and zero outside. In particular we simulated
annular (Fig. 4), semicircular (Fig. 5), elliptical or triangular
(Fig. 6) pupil stops. The phase is pure coma in Figure 4 and
pure spherical aberration in Figure 5. In Figure 6 only the
amplitude is displayed as the phase reconstruction was
similar to that of previous figures. We also simulated the
case of Gaussian apodization (asin Section 3.2) for pure
coma and pure spherical aberration.

The accuracy obtained for the reconstructions, in terms
of the RMSdifference between reconstructed and original
data (amplitude and phase respectively) are listed in Table 1
for case (2), coma. The results for the other two cases
(spherical aberration and real ocular wave aberration) are
not included since they are totally equivalent (close RMS
values). The phase reconstruction was good in all cases,
no matter the type of amplitude function or pupil shape.
The RMS phase error is of the order of 6 x 10~ (\ units)
independently from the number of modes considered, asin
the former study. On the contrary, the reconstruction of the
amplitude is strongly dependent on the initial transmittance
function T. For the circle (trivial case, first column in
Table 1) the reconstruction is basically perfect, since the
circle isfully represented by the pistonterm @ =1. When T
is Gaussian, the reconstruction is good, but improves further

Amplitude Phase

Figure 5 Reconstruction of a wavefront with one lambda of
pure spherical aberration 4 through a semicircular aperture.
Original and reconstructions asin Fig. 2.

by increasing the number of modes (about three orders of
magnitude when passing from 36 to 91 modes). Thisresult is
also consistent with that obtained with real eyes. In the
other cases (annular, semicircle, ellipse, triangle) the
number of modes used here seems insufficient to accurately
represent the sharp edges of the stop. In fact, we can
observe ringing or wavy-like artifactsin the reconstructions,
which tend to improve by increasing the number of modes.
The amplitude RMSerrors are now of the order of 10~ even
for 91 modes. Thisseemsthe main limitation of this method:
the reconstruction of sharp edgesin the amplitude function
requires higher order modes (frequencies), whereas the
method seems to work well when both modulus and phase
are smooth functions.

Discussion and conclusions

In this article we propose the use of complex Zernike
polynomialsto represent complex wavefronts, or generalized
pupil functions, with free-from amplitude and phase. The
main advantage is that the CZPs basis provides a unified
framework as opposed to a series of ad hoc solutions
published in the literature for each type of aperture. Our
numerical results are highly satisfactory whenever both
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Ellipse Triangle

Figure 6 Original and reconstructed amplitudes for elliptical
(left) and triangular (right) apertures. The phase reconstruction
was as good as in previous figures.

amplitude and phase are smooth functions within the
reference circle. This could be especially useful to represent
pupil apodization, complex filters, or inhomogeneous beams
(Gaussian, Bessel, etc.) Nevertheless, our results suggest
that the number of modes (or order of polynomials) needed
to obtain a high fidelity representation increases with the
degree of complexity. Atotally different behavior was found
for amplitude and phase. The reconstruction of phase was
always good (regardless of the number of modes), whereas
the amplitude showed a strong dependency on both the
number of modes and the amount of high order aberrations.
Aplausible explanation for the good phase reconstructions
could be that the initial values of phase were also given in
terms of real ZP expansions, and real and complex ZPs are
closely related. On the contrary, the amplitude was either a

Table 1
aberrations are totally equivalent

Gaussian or binary geometric masks. In fact, the main
limitation appears when attempting to represent
discontinuities, such as sharp edges, or very high frequency
features with a low number of modes. When one tries that,
then the reconstruction shows smoothed versions of edges
with ringing or wavy artifacts around. These effects are
analogous to the aliasing artifacts that one finds in Fourier
analysis due to spectral overlapping. To avoid this type of
artifacts, when computing the Fourier transform, the signal
must be band-limited and the minimum sampling (Nyquist)
frequency has to be double that the maximum frequency
present in the signal. In Fig. 1 we can appreciate that the
CZPs show a sort of radial and angular frequencies associated
to nand m. Roughly speaking, in order to represent a small
(high frequency) feature in the wavefront, we need to
include higher order modes which may display features of
the same size.

In the examples studied so far, the phase was a smooth
function (ZP expansion), what is a common situation in
optics. In these cases, and when the accuracy demand is
important mainly for the phase of the wavefront (what is
also usual), then one can get reasonable results with a
limited number of modes such as in the present
implementation (36 or 91 modes). When very high
frequencies are present and accuracy requirements are high
too, then ad hoc solutions or Fourier series may be more
efficient computationally. This is mainly because the
evaluation of long polynomial strings is time consuming.
However, CZPs present important advantages. As we said in
the introduction, the N-Z theory™ of image formation shows
that it is possible to establish a linear relationship between
the modal expansion of the image of a point source, the
amplitude spread function (ASF), and a modal expansion of
the complex wavefront.? If we neglect constants:

Ak, §) =FT[Rp, 0)] = FIIX b7 = X bFU;(x, ¢) (15)

where functions U7(k,$) = FTTC (p, 6)] are the Fourier
transforms of CZPs. They have an analytical expression
similar to that of ZPs, but in terms of Bessel functions, ?'
instead of radial polynomials Ay. In other words, the same
coefficients describe the generalized pupil function and the
image of a pint source. For incoherent illumination, the
point-spread function, PSF is the squared modulus of the
ASF: PSHk,¢) =| ASH k, ¢)| 2 In addition to saving computing
time, this theory permits a direct, simple connection
between wavefront and image quality metrics could have
a high potential in applications in visual optics, including

RMSreconstruction errors for the different pupil transmissions and for 1 A of pure coma. The errors for other

Circle Gaussian Annular Semicircle Ellipse Triangle
Amplitude
36 modes 1.9 x 107* 2.6x 1072 1.5x 10~ 1.5x 10 1.7 x 10~ 2.4 x 10
91 modes 2.5x107® 3.1x10°® 1.0x 10~ 1.2x 107 1.3x 10~ 1.8 x 10~
Phase
36 modes 5.7 x 10~ 5.7x10™* 5.8 x 10~* 5.7x10* 6.2x 10~ 5.8x10™*
91 modes 5.7 x 10~ 5.7x10~* 5.7 x 10~ 5.7x10~* 6.3 x 10~ 5.8 x 10~
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the optical design of advanced optical elements. The
implementation and practical applications of Eq. 15 will be
the subject of future work.
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