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Abstract

Purpose: To assess the performance of machine learning (ML) ensemble models for pre-

dicting patient subjective refraction (SR) using demographic factors, wavefront aberrome-

try data, and measurement quality related metrics taken with a low-cost portable

autorefractor.

Methods: Four ensemble models were evaluated for predicting individual power vectors (M,

J0, and J45) corresponding to the eyeglass prescription of each patient. Those models were

random forest regressor (RF), gradient boosting regressor (GB), extreme gradient boosting

regressor (XGB), and a custom assembly model (ASB) that averages the first three models.

Algorithms were trained on a dataset of 1244 samples and the predictive power was evaluated

with 518 unseen samples. Variables used for the prediction were age, gender, Zernike coeffi-

cients up to 5th order, and pupil related metrics provided by the autorefractor. Agreement

with SR was measured using Bland-Altman analysis, overall prediction error, and percentage of

agreement between the ML predictions and subjective refractions for different thresholds

(0.25 D, 0.5 D).

Results: All models considerably outperformed the predictions from the autorefractor, while

ASB obtained the best results. The accuracy of the predictions for each individual power vector

component was substantially improved resulting in a § 0.63 D, §0.14D, and §0.08 D reduction

in the 95% limits of agreement of the error distribution for M, J0, and J45, respectively. The wave-

front-aberrometry related variables had the biggest impact on the prediction, while demo-

graphic and measurement quality-related features showed a heterogeneous but consistent

predictive value.
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Conclusions: These results suggest that ML is effective for improving precision in predicting

patient’s SR from objective measurements taken with a low-cost portable device.

© 2022 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

According to the Vison Loss Expert Group (VLEG), it is
expected that 1.7 billion people will be affected by moder-
ate or severe vision impairment by 2050,1 the lead cause
being uncorrected refractive errors (URE).2 URE is a revers-
ible condition that carries significant individual and societal
costs.3 For people suffering from URE, sight can be restored
with refractive surgery, contact lenses, or with appropriate
eyeglasses, the latter being one of the most cost-effective
healthcare solutions.4 Despite the strong impetus to correct
UREs and given their impact on achieving the United Nations
(UN) Sustainable Development Goals (SDGs), they surpris-
ingly remain historically underfunded relative to other
diseases of the eye.5 Their prevalence remains high, particu-
larly in low- and middle-income countries (LMICs), where
vision exams can be highly inaccessible due to a shortage of
eyecare professionals (ECPs) capable of providing clinical-
quality eyeglass prescriptions.

The gold standard for prescribing eyeglasses is subjec-
tive, or manifest refraction. This is a time-consuming proce-
dure that starts with an objective assessment of the
refractive error by means of retinoscopy (in low-resource
settings) or autorefraction (in high-resource settings), fol-
lowed by a subjective refinement until the best corrected
visual acuity is obtained. Accuracy of manifest refraction
heavily relies on the experience of an ECP and the compre-
hension and visual perception of the subject. Repeatability
of refractive error measurements in clinical settings has a
high degree of variability that has been reported to range
from 0.16 D to over 0.78 D in spherical equivalent (average
differences).6,7

Wavefront aberrometry is an objective method for mea-
suring refractive power. It provides a detailed map of the
eye containing a description of both low- (LOA) and high-
order (HOA) aberrations. The shape of the aberrated wave-
front is commonly described using the Zernike polynomials,
the standard method to represent the error in the wave-
front of an optical system with circular pupil.8 Wavefront
aberrometers have demonstrated high accuracy9 and
higher repeatability than manifest refraction,10,11 but they
continue to fail to match the gold standard. These discrep-
ancies have been associated with several phenomena
such as inter-ECP variability,6 influence of high-order
aberrations,12,13 effects of iris color on the infrared light
employed in wavefront aberrometry,14 accommodation
during the measurement,15 or neural compensation of the
refractive error.16,17

The relationship between the optical image on the retina
and human visual perception continues to be a primary focus
in vision research. Computational approaches attempting to
predict subjective refraction from wavefront aberrometry
data using retinal image quality metrics,12,13,18 or novel
wavefront fitting methods,19 have proven to perform better
than standard pupil plane metrics, yet continue to generally

not be considered accurate enough to substitute the gold
standard.20

During the past few years, ML algorithms have experi-
enced an exponential boost in performance, accuracy, and
community support.21 In the field of optometry, ML has been
employed to predict subjective refraction using the Zernike
coefficients with deep learning techniques22 or using
extreme gradient boosting with a new series of polynomials
for describing the wavefront map.23,24 These approaches,
which are largely at research stage, have shown that signifi-
cant improvements in accuracy can be achieved when using
aberrometry data obtained by benchtop systems in highly
controlled clinical and research environments. Unfortu-
nately, such cost-prohibitive requirements fail to address
the access barriers faced by healthcare disparities popula-
tions. Furthermore, refractive errors are also known to be
correlated to demographic factors (particularly age),25 that
can be interpreted by the models and potentially used to
improve prediction power.

The primary aim of this work was to assess the performance
of different machine learning ensemble models to predict
patient subjective refraction using wavefront aberrometry and
demographic variables. In contrast with the previous studies,
data used for this work was obtained from a clinical study per-
formed in 2015 at Aravind Eye Hospital in Madurai and a rural
satellite vision center in Thiruppuvanam, India. The objective
of that study was to evaluate the quality of eyeglass prescrip-
tions provided by a low-cost portable wavefront autore
fractor,26 an early prototype of the QuickSee (QS) (PlenOptika
Inc, USA), operated by a minimally trained technician in a low-
resource setting on a population with high age and refractive
error variability. The secondary aim of this study was to under-
stand if ML-based approaches, when applied to real-world
data obtained with low-cost handheld ophthalmic devices
could potentially increase access to accurate, clinical-quality
SR prescriptions when operated by non-experts.

Materials and methods

Dataset description

A total of 708 subjects were enrolled in the study, 506 from
the base hospital (HA) and 202 from the vision center (VA).
Inclusion criteria were patients with ages ranging between
15 and 70 years and within the measurement range of the
device used in the study (spherical equivalent of �6 D to +10
D). Exclusion criteria included presence of mature cataract,
any prior eye surgery, any major eye illnesses, and use of sys-
temic or ocular drugs which may affect vision. Subjective
refraction results, QS measurements, and demographic data
were recorded for all subjects eligible for the study. Clinical
refraction procedure included streak retinoscopy and sub-
jective refraction by an experienced refractionist. Further
details about the study protocols can be found in Durr
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et al.26 Patients with missing data, like age or gender, or
with the presence of cataract or other problem that pre-
vented the autorefractor from providing a reliable prescrip-
tion were removed from the dataset.

Autorefractor

One distinctive feature of QS compared to standard desktop
autorefractors is that it works in video mode. Instead of pro-
viding an eyeglass prescription from a single wavefront
image (or the average of several static images), it records a
large sequence of Shack-Hartmann spot patterns over a 10 s
video and applies advanced algorithms to process the
sequence.27 Consequently, this device can provide not only
standard aberrometry results (Zernike coefficients), but also
a set of measurement-related quality metrics, such as the
standard deviations of pupil size and pupil center in X and Y
directions during the acquisition, which were also used for
training the different models. Additional information about
the device working principle can be found here.28

Machine learning models

Although in the original study 3 measurements for each eye
were acquired, in this work only the first measurement of
each eye was used to avoid training the ML algorithms with
redundant data. To account for instances where there were
significant differences between the 3 different

measurements of each eye, one of the two additional meas-
urements were included in the dataset. The threshold to
include this additional data was a spherical equivalent dif-
ference of � 0.5D between the three measurements (stan-
dard deviation � 0.5D) of the same eye. Of the two
additional measurements, the one with the biggest differ-
ence from the first measurement was selected. Conse-
quently, each patient contributed a minimum of 2
measurements (1 per eye) and a maximum of 4 measure-
ments (2 per eye).

Choosing the proper number of observations to be used
for training and testing does not follow a general rule. In our
case, due to the relatively small dataset, it was decided to
use 70% of the subjects for training and the remaining 30%
for testing. Partitioning was performed using stratified sam-
pling to ensure similar distributions of age, gender, and
spherical equivalent error between all sets. As an additional
validation step, all measurements for both eyes for a given
patient were placed either in training or testing to prevent
information leakage.

The performance of the ML models is known to be very
sensitive to the quality and number of features considered
for predictions.29 Redundant or unrelated variables can
reduce the accuracy of the models and increase its complex-
ity causing overfitting. In this work, we only employed pre-
diction variables known to influence subjective refraction
Table 1. provides a description of the variables employed to
train the models as well as the rationale behind the decision.

Table 1 Description and justification of the wavefront aberrometry, measurement quality metrics, and demographic variables

used to train the models.

Variable Name Description Justification

Wavefront

Aberrometry [Z�2
2 ; . . . ; Z5

5] Zernike coefficients up to 5th

order without the Piston, Tilt,

and Tip since they are not used

for computation of low- and

high-order aberrations.

Zernike coefficients are the

standard method to describe

the optical aberrations of the

eye.8

[PS_Avg] Average pupil size along the 10 s

measurement.

Pupil size strongly influences

magnitude of HOAs.36

Measurement quality metrics [PS_Std] Standard deviation of pupil size

along the 10 s measurement

with the QS prototype.

Changes in pupil size are usually

related to accommodation.37

[PC_Std_X, PC_Std_Y] Standard deviation of the cen-

ter of the pupil in X and Y direc-

tions during the measurement.

Misalignments between the eye

and Shack-Hartman sensor will

capture (and refract) the

periphery of the pupil. Central

and peripheral refractions can

be different in some

populations.38,39

Demographic [Age] Patient’s age. Prevalence of refractive

errors25 and accommodation

range40 are strongly correlated

to age.

[Gender] Patient’s gender. Prevalence of refractive errors

has been reported to have some

degree of correlation with

gender.41,42
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Specifically, input features were separated into aberrometry
data, measurement quality related metrics, and demo-
graphic data.

Four ensemble models were trained and tested for each
power vector component: random forest regressor30,31

(RF), gradient boosting regressor30�32 (GB), extreme gradi-
ent boosting regressor33 (XGB), and a custom assembly
model (ASB) that averages the predictions of RF, GB and
XGB. Ensemble regression techniques, like averaging the
output of several models, are known to reduce the variance
of the final prediction.31 Since selection of the best model
is linked to the selection of the best features, we per-
formed an extensive grid search; for each combination of
input features, each model underwent hyperparameter tun-
ing using a 5-fold randomized cross-validation using the
mean absolute error as scoring function. The impact of indi-
vidual features in the predictions of the models was esti-
mated using permutation-based algorithms. Permutation
values were also obtained using 5-fold cross-validation in
the training set.

The research code was developed in JupyterLab (2.1.5)
IDE using Python (3.8.3). Data preprocessing, aggregation,
and cleaning in preparation for machine learning was imple-
mented with Pandas (1.0.5) and Numpy (1.18.5). Machine
learning models Random Forest and Gradient Boosting were
from Scikit-learn (0.23.1) and Extreme Gradient Boosting
from XGBoost (1.2.1).

Statistical analysis

Statistical analysis was performed on the power vector
domain using the predictions from ML models and the
autorefractor on the test dataset. Subjective refraction
prescriptions were converted to power vector parameters
of spherical equivalent (M), vertical Jackson cross cylin-
der (J0), and oblique Jackson cross cylinder (J45) .

34 In the
original study,25 samples used for statistical analysis were
the median of three measurements for the right eye. This
differs from the analysis in this paper, in which we used
individual measurements from both eyes for the calcula-
tions.

Three statistical procedures were followed to measure
agreement between predictions and subjective refrac-
tion. First, Bland-Altman analysis was performed since it
is the standard procedure when evaluating the accuracy
and precision of two separate measurement methods (in
this case, predicted refraction compared to subjective

refraction).35 Second, overall prediction error was mea-
sured in terms of mean absolute error (MAE) and root
mean squared error (RMSE), a metric more sensitive to
outliers. Finally, we evaluated the percentage of agree-
ment between predictions and subjective refraction for
0.25 D and 0.5 D thresholds.

Results

Population

After data preprocessing and cleaning, 669 subjects (94.5%
of overall patient dataset) remained for the analysis. A
demographic description and distribution of spherical equiv-
alent errors of the patient population is reported in Table 2
and Fig. 1, respectively. The proportion of age, gender, and
spherical equivalent is comparable between training and
testing groups.

Agreement with subjective refraction

The four algorithms performed similarly, but the ASB model
(formed by the mean of the predictions of RF, GB, and XGB)
slightly reduced the error, while keeping the same percent-
age of agreement as the other three models. Therefore, the
results discussed below will all refer to the ASB model.
Detailed results for each model are shown in summary
Table 3.

ASB model significantly improved the agreement with
subjective refraction compared to the baseline autorefrac-
tion results. The mean absolute error (MAE) decreased by
42.5% (0.27 D), 29.4% (0.06 D), and 41.7% (0.05 D), for M, J0,
and J45, respectively. The RMSE was also reduced in similar
proportions (38.1% (0.32 D), 29.2% (0.08 D), and 23.5% (0.04
D), for M, J0, and J45, respectively. In terms of percentage of
agreement between predictions and SR, the proportion of
outliers (�1 D) in the spherical equivalent predictions was
reduced from 20.3% in the baseline model to 5.2% in the ASB
model. Furthermore, the percentage of agreement for a 0.5
D threshold increased from 44.8% (QS-SR) to 72.9% (ML-SR)
for spherical equivalent refraction.

Fig. 2 contains a histogram of the prediction error of ASB
and QS models for the three power vectors. The plots show
the effect in prediction accuracy and precision of the
machine learning model. The general trend to underesti-
mate the M value in the baseline model was mostly

Table 2 Population demographics characteristics and spherical equivalent error distribution.

Characteristics Entire Dataset Training Set Testing Set T test (p-value)

Training vs Testing

Number of Subjects 669 468 201 �

Number of Samples 1762 1244 518 �

Female n (%) 391 269 122 0.31

(58.4) (57.5) (60.7)

Age § SD (range) 35.2 § 13.7 35.5 § 13.6 34.5 § 13.7 0.15

[years] (15 - 70) (15 - 70) (16 - 64)

SE § SD (range) �0.7 § 1.67 �0.67 § 1.62 �0.83 § 1.77

[diopters] (�6.0 - 3.5) (�5.75 - 3.5) (�6.0 - 2.63) 0.06
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corrected by the ASB model, but the percentage of overesti-
mation was similar in both cases.

Bland-Altman analysis showed a bias between ASB and SR
predictions of 0.15 D, �0.01 D, and 0.01 D, for M, J0, and

J45, respectively (Fig. 3). The 95% limits of agreement (cal-
culated as 1.96 x Standard Deviation of the differences)
between ASB and SR were §0.99 D, §0.33 D, and §0.25 D,
for M, J0, and J45. Compared to the Bland-Altman diagram of

Fig. 1 Distribution of spherical equivalent errors in patient population. (A) Entire dataset, (B) training dataset, and (C) testing

dataset. Histograms bin size is 1.0 D. Refraction data was obtained by standard subjective procedure.

Table 3 Agreement comparison between ML models predictions and autorefractor with subjective refraction for M, J0, and J45.

ASB model provided the best results for the three power vectors. *LOA: Limits of agreement calculated as 1.96 x Standard Devia-

tion of the differences.

Objective Dynamic + Demographic Features

Model MAE RMSE Min. Max. Agreement

(%)

Bland-Altman

(D)

0.25 D 0.50 D Mean 95% LOA

QS M 0.65 0.84 �3.19 2.33 25.87% 44.79% �0.13 �1.75, +1.49

J0 0.17 0.24 �1.59 0.99 76.25% 96.71% 0.01 �0.47, +0.48

J45 0.12 0.17 �0.63 0.68 88.22% 98.45% 0.02 �0.31, +0.34

RF M 0.39 0.54 �1.70 2.45 45.17% 72.01% 0.17 �0.83, +1.17

J0 0.13 0.17 �0.81 0.69 88.80% 97.88% 0.00 �0.34, +0.34

J45 0.07 0.13 �0.81 0.87 94.02% 99.23% 0.01 �0.24, +0.26

GB M 0.40 0.54 �1.55 2.29 41.50% 69.31% 0.13 �0.88, 1.15

J0 0.13 0.17 �0.71 0.75 89.18% 98.26% �0.01 �0.35, +0.32

J45 0.07 0.13 �0.88 0.99 94.40% 99.23% 0.00 �0.25, +0.25

XGB M 0.40 0.53 �1.70 2.66 44.01% 71.62% 0.15 �0.86, +1.15

J0 0.12 0.17 �0.71 0.74 89.58% 98.06% 0.00 �0.34, +0.33

J45 0.07 0.14 �0.88 0.99 94.59% 98.46% 0.01 �0.26, +0.28

ASB M 0.38 0.52 �1.55 2.40 45.56% 72.90% 0.15 �0.83, +1.13

J0 0.11 0.16 �0.74 0.72 89.10% 98.64% �0.01 �0.34, +0.32

J45 0.07 0.13 �0.81 0.97 95.27% 99.23% 0.01 �0.24, +0.25
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the baseline model, the 95% limits of agreement of predic-
tions were reduced by §0.63 D, §0.14 D, and §0.08 D, for
M, J0, and J45.

Fitting a linear regression model to each Bland-Altman
(Fig. 3) provided a slope of �0.12, �0.11, and �0.40, for M,
J0, and J45, for the assembly model, compared to a slope of
0.31, 0.35, and 0.30, for M, J0, and J45, for the autorefractor
predictions. The change in slope sign indicates a trend for
under correction of the ASB model in both myopic and hyper-
opic regions, and the flattening of the slope for the spherical
equivalent indicates higher agreement with SR in the edges
of both measurement ranges. Bland-Altman plots for the dif-
ferent power vector components (Fig. 3) clearly shows this
change in the distribution of the differences and its effect in
the 95% limits of agreement, which are considerably
improved in all the cases.

Feature importance

In general, for all the models evaluated the most rele-
vant features for predicting individual power vectors
were Zernike coefficients Z0

2 (defocus), Z2
2 (vertical astig-

matism), average pupil size, and age for spherical equiva-
lent; Zernike coefficient Z2

2 (vertical astigmatism), average
pupil size, and age for vertical Jackson cross cylinder (J0);
and Zernike coefficients Z�2

2 (oblique astigmatism), Z2
2 (ver-

tical astigmatism), average pupil size, average deviation in
pupil center and age for oblique Jackson cross cylinder
(J45) (Fig. 4).

The three base models provided different levels of
importance to each feature but demonstrated agreement
on the most relevant parameters. Regarding the demo-
graphic variables, the age was in general an important
piece of information for all the power vector components
being predicted, while gender was found to be practi-
cally irrelevant. Measurement quality metrics included
were relevant in the prediction, especially the average
pupil size, which was of interest for all the models, and

the standard deviation of the pupil center was of interest
for J45 models.

Conclusions

This study evaluated the prediction power of four differ-
ent machine learning ensemble models to estimate mani-
fest refraction from wavefront aberrometry data,
demographic factors, and measurement-quality metrics.
Agreement with subjective refraction for M, J0, and J45
was considerably improved compared to the baseline
results provided by the autorefractor. Similarly, the vari-
ance of the predictions (95% limits of agreement) was
reduced for the three power vector components while
keeping the bias error close to zero. This improvement in
accuracy is also reflected in the percent of patients in
which the prediction is within 0.25 D and 0.50 D of subjec-
tive refraction (25.8% to 45.5% and 44.7% to 72.9% for 0.25
D and 0.50 D thresholds, respectively).

The most relevant feature for each of the models was the
Zernike coefficient associated to the power vector the
model was trying to predict: Z0

2 for the M, Z2
2 for J0, and Z�2

2

for J45, as was expected. The second most important param-
eter considered by all models was the average pupil size dur-
ing the measurement. This is not surprising considering that
pupil diameter is a significant autorefraction feature used to
estimate corrective lenses. The third most influential fea-
ture was the age, accounting for »5% of the weight of the
prediction. Age is a crucial parameter in datasets containing
young children due to factors such as childhood-hyperopia,
which in general is very difficult to diagnose due to the high
accommodative capacity of children. Specific high-order
Zernike coefficients were not relevant for the models, but
Z2
2 was taken into account by the M and J45 models. Gender

was not considered a remarkable feature by any of the three
models.

Decrease in the mean absolute error of the M, J0, and
J45 predictions (0.27 D, 0.06 D, and 0.05 D) for the ASB

Fig. 2 Distribution of the prediction error for M, J0, and J45 of the assembly model (blue) and autorefractor (orange).
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model was bigger than those values obtained by Rampat
et al.23 using aberrometry data (0.10 D, 0.05 D, and 0.05
D). However, it should be noted that this study was per-
formed under highly controlled conditions using data from
a desktop aberrometer, and a new base of polynomials that
provide better separation between low- and high-degree
wavefront components than standard Zernike polynomials.
Apart from these differences, the original error of the
baseline model in our study was higher, what could be
explained by the heterogeneity in the population charac-
teristics (wider inclusion criteria), and the fact that the
instrument used for the study was an early prototype of the
current production device operated by a minimally trained
technician. Finally, many of the subjects enrolled in this
study were emmetropic with 29.56% of the samples within
0.25 D of spherical equivalent. Having a population with a

more heterogeneous refractive error distribution would
have been beneficial for the models, but this naturally-
occurring distribution has been found to resemble those
obtained in other studies.43,44

Results shown in this paper show a considerable improve-
ment in the agreement with SR when compared to the autor-
efractor predictions obtained by means of the paraxial
matching method. An extra validation step would include a
comparison of the ASB model against other SR prediction
methodologies like image quality metrics13,18 or the MTR
metric from Jaskulski et al.19 when executed on the same
dataset.

Direct application of these models to patients
implanted with multifocal intraocular lenses (IOLs) is
not possible due to the limitations of Shack Hartman
sensors to separate the overlapping wavefronts

Fig. 3 Bland-Altman plots comparing the agreement between prescriptions provided by the autorefractor (left) and ASB assembly

model (right) versus subjective refraction for M, J0, and J45.
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generated by the diffractive lenses. A different repre-
sentation other than the Zernikes would be required,
and the models would need extra training and tuning for
each specific multifocal IOL.

The results obtained in this work suggest that a ML
approach, implementable via software, may potentially
improve upon the accuracy of the handheld autorefrac-
tor used in the study in a cost-effective manner. An
important point to note is that since the most influen-
tial variables for the models were the Zernike coeffi-
cients, pupil size and age (standard variables in
aberrometry), this approach could potentially be
extended to other autorefractors, supporting the use of

the proposed methodology to improve access to vision
correction by non-technical ECPs in health disparity
populations.
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