Aspheric Optical Zones in hyperopia with the SCHWIND AMARIS

Massimo Camellina,*, Samuel Arba Mosquerab,c

aFrom SEKAL Rovigo Microsurgery Centre, Rovigo, Italy
bFrom Grupo de Investigación de Cirugía Refractiva y Calidad de Visión, Instituto de Oftalmobiología Aplicada, University of Valladolid, Valladolid, Spain
cFrom SCHWIND eye-tech-solutions, Kleinostheim, Germany

Submitted: 29th May 2011; accepted: 29th August 2011

\textbf{Abstract}

\textit{Purpose:} To evaluate the corneal Functional Optical Zone (FOZ) and the Effective Optical Zone (EOZ) of the ablation, among eyes that underwent \textit{LASIK}/Epi-\textit{LASIK} treatments for hyperopic astigmatism.

\textit{Methods:} Twenty \textit{LASIK}/Epi-\textit{LASIK} treatments with mean defocus $+2.21 \pm 1.28$ D performed using the SCHWIND AMARIS were retrospectively evaluated at 6-month follow-up. In all cases pre-/post-operative Corneal-Wavefront analyses using the Keratron-Scout (OPTIKON2000) were performed. FOZ-values were evaluated from the Root-Mean-Square of High-Order Wave-Aberration (RMS_h), whereas EOZ-values were evaluated from the changes of Root-Mean-Square of High-Order Wave-Aberration (ΔRMS_h) and Root-Mean-Square of the change of High-Order Wave-Aberration ($\text{RMS}(\Delta\text{HOAb})$). Correlations of FOZ and EOZ with Planned Optical Zone (POZ) and Defocus correction (Seq) were analyzed using a bilinear function.

\textit{Results:} At six-month, defocus was -0.04 ± 0.44 D, ninety percent eyes were within ± 0.50 D from emmetropia. Mean RMS_h increased $0.18 \pm 0.22 \mu m$, SphAb $-0.30 \pm 0.18 \mu m$, and Coma $0.07 \pm 0.18 \mu m$ 6-month after treatment (6-mm diameter). Mean FOZ\textsubscript{pre} was 7.40 ± 1.48 mm, whereas mean POZ was 6.76 ± 0.22 mm, whereas mean FOZ\textsubscript{post} was 5.53 ± 1.18 mm (significantly smaller, $p < 0.0001$; bilinear correlation $p < 0.005$), mean EOZ\textsubscript{RMS_h} 6.47 ± 1.17 mm (bilinear correlation $p < 0.005$), EOZ\textsubscript{RMS_\Delta\text{HOAb}} 5.67 ± 1.23 mm (significantly smaller, $p < 0.0005$; bilinear correlation $p < 0.05$). EOZ positively correlates with POZ and declines steadily with Seq. A treatment of $+3$ D in 6.50-mm POZ results in 5.75-mm EOZ (7.75-mm nomogrammed POZ), treatments in 7.00-mm POZ result in about 6.25-mm EOZ (8.25-mm nomogrammed POZ).

*Corresponding author. Sekal Rovigo, Microsurgery Centre, Via Dunant 10, Rovigo, 45100, Italy
\textit{E-mail address:} cammas@tin.it (Massimo Camellin).

1888-4296/ $ - see front matter © 2011 Spanish General Council of Optometry. Published by Elsevier España, S.L. All rights reserved.
The profiles etched onto the cornea and their optical influence greatly differ between myopic and hyperopic corrections. Complaints of ghosting, blur, haloes, glare, decreased contrast sensitivity, and vision disturbance have been documented with small optical zones in hyperopia, especially when the scotopic pupil dilates beyond the diameter of the surgical optical zone, and these symptoms may be a source of less patient satisfaction. This is supported by clinical findings on night vision with small ablation diameters as well as large pupil sizes and attempted correction. Although increasing the size of the planned ablation zone has reduced the incidence of these complaints, it has not eliminated them. Refractive procedures tend to induce aberrations that affect visual performance. Special ablation patterns were designed to preserve the preoperative level of high-order aberrations, if the best-corrected visual acuity, in a given patient, has been unaffected by the pre-existing aberrations. Thus to compensate for the aberrations induction observed with other types of profile definitions, some of those sources of aberrations are those related to the loss of efficiency of the laser ablation for non-normal incidence. Methods for determining functional optical zones (FOZ) after hyperopic refractive surgery have been used previously.

Laser refractive surgery generally reduces low order aberrations (defocus and astigmatism), yet high-order aberrations, particularly coma and spherical aberration, may be significantly increased. It is important to investigate the changes in high-order aberrations in optimized hyperopic laser refractive surgery, not only to characterize the effects on vision outcome, but also to provide valuable information for the design of customized...
ablation algorithms, which should eliminate both existing and surgically-induced high-order aberrations.

We recently published our findings concerning EOZ for myopia16, now we investigated the postoperative corneal wavefront (CW) of eyes that underwent successful refractive surgery for hyperopia and objectively determined the FOZ and EOZ at the 6-month (6M) postoperative examination.

Patients and methods

The first consecutive 20 compound hyperopic astigmatism (HA) treatments (10 patients), treated by MC using the AMARIS Aberration-FreeTM aspheric ablation with LASIK7 or Epi-LASEK8 techniques which completed 9M follow-up were retrospectively analyzed.

Six-month follow-up was available in the 20 of these eyes (100%), and their preoperative data were as follows: mean manifest spherical defocus was $\pm 2.21 \pm 1.28$ D (range, $+1.00$ to $+5.00$ D); mean manifest astigmatism was 3.12 ± 1.71 D (range, 0.50 to 6.00 D). In all eyes, we measured corneal topography and derived corneal wavefront analyses (Keratron-Scout, OPTIKON2000, Rome, Italy), manifest refraction, and uncorrected and best spectacle-corrected Snellen visual acuity (UCVA and BCVA, respectively). Measurements were performed preoperatively and at one, three, and six months after surgery.

All ablations were non-customized based on “aberration neutral” profiles19 and calculated using the ORK-CAM software module version 3.1 (SCHWIND eye-tech-solutions, Kleinostheim, Germany).

Mean planned optical zone (POZ) was 6.27 ± 0.22 mm (range, 6.25 to 7.25 mm) with a variable transition size (TZ) automatically provided by the laser related to the planned refractive correction of 2.04 ± 0.71 mm (range, 0.96 to 2.50 mm) leading to a total ablation zone (TAZ) 8.81 ± 0.41 mm (range, 7.99 to 9.22 mm). The ablation was performed using the AMARIS excimer laser (SCHWIND eye-tech-solutions, Kleinostheim, Germany).

Since the Scout system has an eight images buffer, we acquire systematically four topographic maps per eye and visit. We have analyzed the results for all topographies and taken the median value. We calculated a value for the repeatability for each of the methods.

Analysis of the functional optical zone (FOZ)

For our analysis, the concept of equivalent defocus (DEQ) has been used as a metric to minimise the differences in the Zernike coefficients due to different analysis diameters20. Seiler et al.31 described an increase in spherical aberration with pupil dilation in corneas that have undergone photorefractive keratectomy but not in healthy corneas.

By analyzing corneal Wave Aberrations for diameters starting from 4-mm, we have increased the analysis diameter in 10 μm steps and refit to Zernike polynomials up to the 7^{th} radial order, until the corneal RMS\textsubscript{ho} was above 0.375 D for the first time. This diameter minus 10 μm was determining the FOZ for that case (Figure 1):

$$\text{RMS}_{\text{ho}}(\text{FOZ}) = 0.375D$$

(1)

Analysis of the effective optical zone (EOZ)

Effective Optical Zone (EOZ) can be defined as the part of the corneal ablation area that actually conforms to the theoretical definition. Again, the definition implies that the optical zone don't need to be circular.

\textbf{ΔRMS\textsubscript{ho} method}

By comparing postoperative and preoperative corneal Wave Aberrations increasing the analysis diameter until the difference of the corneal RMS\textsubscript{ho} was above 0.375 D for the first time (Figure 2, Top):

$$\text{ΔRMS}_{\text{ho}}(\text{EOZ}) = 0.375D$$

(2)

\textbf{RMS(ΔHOAb) method}

By analyzing the differential corneal Wave Aberrations increasing the analysis diameter until the root-mean-square of the differential corneal Wave Aberration was above 0.375 D for the first time (Figure 2, Bottom):

$$\text{RMS(ΔHOAb)(EOZ)} = 0.375D$$

(3)

Mean value analyses

We analyzed the mean values of these metrics and assessed the statistical significance of the FOZ\textsubscript{rout} compared to the FOZ\textsubscript{ref}, as well as, of the EOZ compared to the POZ using paired Student’s T-tests.

Regression analyses

We have analyzed the correlations of FOZ\textsubscript{rout} with FOZ\textsubscript{ref} and with defocus correction, as well as, of EOZ with POZ and with defocus correction, using a bilinear function (linear with POZ and defocus) of the form:

$$\text{FOZ}_{\text{rout}} = a + b \cdot \text{min}(\text{FOZ}_{\text{ref}}, \text{POZ}) + c \cdot \| \hat{U} \| + d \cdot \text{min}(\text{FOZ}_{\text{ref}}, \text{POZ}) \cdot \| \hat{U} \|$$

(4)

$$\text{EOZ} = a + b \cdot \text{POZ} + c \cdot \| \hat{U} \| + d \cdot \text{POZ} \cdot \| \hat{U} \|$$

(5)

where a is a general bias term, b the partial slope for the linearity with FOZ\textsubscript{ref} or POZ, c the partial slope for the linearity with the norm of the U-vector, and d the partial slope for the linearity with the product FOZ\textsubscript{ref} or POZ and the norm of the U-vector. The ideal cases, for which FOZ\textsubscript{rout} equals FOZ\textsubscript{ref} and EOZ equals POZ independently on the defocus correction, are represented by the coefficients:

$$a = 0$$

(6)

$$b = 1$$

(7)

$$c = 0$$

(8)

$$d = 0$$

(9)

The U-vector22 can be represented as the vector in the 3-dimensional double angle astigmatism space with C/2, M,
and $C/2$ as components. The norm of this vector correlates to the dioptric blur and to visual acuity23 and can be formulated in sphero-cylindrical prescription as:

$$\|\vec{U}\| = \sqrt{S^2 + S\cdot C + \frac{C^2}{2}}$$ \hspace{1cm} (10)

We assessed the statistical significance of the correlations using Student’s T-tests, the Coefficient of Determination (r^2) and the standard deviation on the individual terms were used, and the significance of the correlations has been evaluated considering a metric distributed approximately as t with $N-2$ degrees of freedom where N is the size of the sample.

Calculation of proposed nomogram for OZ

With the obtained parameters (a to e), we have calculated the nomogram planned OZ (NPOZ) required to achieve an intended EOZ (IEOZ):

$$NPOZ = \frac{IEOZ - a - c \cdot \|\vec{U}\|}{b + d \cdot \|\vec{U}\|}$$ \hspace{1cm} (11)

Results

Refractive outcomes

Concerning refractive outcomes, we merely want to outline that both, the SEq and the cylinder were significantly reduced to subclinical values at 6 months postoperatively [mean residual defocus refraction was -0.04 ± 0.44 D (range -1.00 to $+0.63$ D) ($p < 0.0001$) and mean residual

Figure 1 Concept of the Functional Optical Zone: By analyzing corneal Wave Aberrations for diameters starting from 4-mm, we have increased the analysis diameter in 10 μm steps, until the corneal RMSHo was above 0.375 D for the first time. This diameter minus 10 μm was determining the FOZ.
Aspheric Optical Zones in hyperopia with the SCHWIND AMARIS

Figure 2 Top: Concept of the ΔRMS\(_h\) method: By comparing postoperative and preoperative corneal Wave Aberrations analyzed for a common diameter starting from 4-mm, we have increased the analysis diameter in 10 μm steps, until the difference of the corneal RMS\(_h\) was above 0.375 D for the first time. This diameter minus 10 μm was determining the EOZ. Bottom: Concept of the RMS(ΔHOAb) method: By analyzing the differential corneal Wave Aberrations for a diameter starting from 4-mm, we have increased the analysis diameter in 10 μm steps, until the root-mean-square of the differential corneal Wave Aberration was above 0.375 D for the first time. This diameter minus 10 μm was determining the EOZ for that case.
astigmatism magnitude 0.22 ± 0.55 D (range, 0.00 to 1.50 D) ($p < 0.001$) and that 90% of eyes ($n = 18$) were within ±0.50 D of the attempted correction (Table 1).

Changes in corneal Wave Aberration at 6-mm analysis diameter

Preoperative corneal coma aberration ($C[3, \pm 1]$) was $0.27 \pm 0.24 \mu$m RMS, corneal spherical aberration ($C[4,0]$) (SphAb) was $+0.29 \pm 0.16 \mu$m, and corneal RMS ho was $0.46 \pm 0.13 \mu$m RMS (Table 1). Postoperatively, corneal coma magnitude changed to $0.34 \pm 0.26 \mu$m RMS ($p < 0.05$), corneal SphAb to $-0.01 \pm 0.25 \mu$m ($p < 0.005$), and corneal RMS ho changed to $0.64 \pm 0.29 \mu$m RMS ($p < 0.01$) (Table 1).

Mean value analyses

We analyzed the mean values of FOZ and EOZ and assessed the statistical significance of the FOZ post compared to the FOZ pre, as well as, of the EOZ compared to the POZ using

Table 1 Refractive outcomes and induced aberrations at 6-month

<table>
<thead>
<tr>
<th>Mean value analyses</th>
<th>Pre-op (Mean ± Std Dev)</th>
<th>6-month post-op (Mean ± Std Dev)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defocus (D)</td>
<td>+2.21 ± 1.28</td>
<td>-0.04 ± 0.44</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>Cylinder (D)</td>
<td>3.12 ± 1.71</td>
<td>0.22 ± 0.55</td>
<td>< 0.005*</td>
</tr>
<tr>
<td>Predictability within ±0.50 D (%)</td>
<td>-</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>Predictability within ±1.00 D (%)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Coma Aberration at 6.00 mm (μm)</td>
<td>0.27 ± 0.24</td>
<td>0.34 ± 0.26</td>
<td>< 0.05*</td>
</tr>
<tr>
<td>Spherical Aberration at 6.00 mm (μm)</td>
<td>0.29 ± 0.16</td>
<td>-0.01 ± 0.25</td>
<td>< 0.005*</td>
</tr>
<tr>
<td>High-Order Aberration at 6.00 mm (μm RMS)</td>
<td>0.46 ± 0.13</td>
<td>0.64 ± 0.29</td>
<td>< 0.01*</td>
</tr>
</tbody>
</table>

Table 2 Effective optical zone 6-month after surgery vs. planned optical zone

<table>
<thead>
<tr>
<th>Mean value analyses</th>
<th>Mean</th>
<th>StdDev</th>
<th>Min</th>
<th>Max</th>
<th>P</th>
<th>R-corr</th>
<th>p_corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOZ_pre (mm)</td>
<td>7.40</td>
<td>1.48</td>
<td>3.99</td>
<td>9.44</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FOZ_post (mm)</td>
<td>5.53</td>
<td>1.18</td>
<td>3.99</td>
<td>7.86</td>
<td>—</td>
<td>0.3</td>
<td>< 0.05*</td>
</tr>
<tr>
<td>Planned OZ (mm)</td>
<td>6.76</td>
<td>0.22</td>
<td>6.25</td>
<td>7.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EOZ_RMS (mm)</td>
<td>6.47</td>
<td>1.17</td>
<td>4.18</td>
<td>8.77</td>
<td>—</td>
<td>0.6</td>
<td>< 0.005*</td>
</tr>
<tr>
<td>EOZ_REL+OZ (mm)</td>
<td>5.67</td>
<td>1.23</td>
<td>3.99</td>
<td>8.08</td>
<td>—</td>
<td>0.2</td>
<td>.1</td>
</tr>
</tbody>
</table>

Figure 3 Evolution and change of the OZ with time.
Aspheric Optical Zones in hyperopia with the SCHWIND AMARIS

paired Student’s T-tests (Table 2), FOZ_{post} was significantly smaller ($p < 0.0001$) than FOZ_{pre}, EOZ_{pre} was similar to POZ, whereas EOZ_{pre(RMS)} was significantly smaller ($p < 0.05$) than POZ and EOZ_{pre(RMS)}. Figure 3 shows the evolution and change of the OZ with time. FOZ and EOZ showed smaller values for shorter follow-up times and continues increasing from 1, to 3 and 6-months after treatment.

Repeatability of the methods for FOZ/EOZ

Figure 4 shows the repeatability of the FOZ and EOZ. FOZ and EOZ showed similar values for repeatability 6-months after treatment of about 0.3 mm. The only statistically significant difference in repeatability was between FOZ_{pre}, FOZ_{post} and EOZ_{pre(RMS)} method.

Calculation of the bilateral (OD vs. OS) correlations for FOZ/EOZ

All metrics were bilaterally well correlated between OD and OS eyes (Table 3).

Regression analyses

We have analyzed the correlations of FOZ_{post} with FOZ_{pre} and with refractive correction ($r^2 = 0.7, p < 0.0001$ for 20 eyes, $r^2 = 0.7, p < 0.005$ for 10 patients) (Figure 5), as well as, of EOZ for each of the methods with POZ and with defocus correction ($r^2 = 0.7, p < 0.0001$ for 20 eyes, $r^2 = 0.6, p < 0.005$ for 10 patients for the ΔRMS_{ho} method; and $r^2 = 0.6, p < 0.005$ for 20 eyes, $r^2 = 0.5, p < 0.05$ for 10 patients for the RMS_{ΔHOAb} method) (Figure 6).

FOZ_{post} and EOZ correlate positively with FOZ_{pre} and POZ, respectively, and decline steadily with increasing defocus corrections (Tables 4 and 5).

Calculation of proposed nomogram for OZ

With the obtained parameters (a to e), we have calculated the nomogram planned OZ (NPOZ) required to achieve an intended EOZ (IEOZ) (Figure 7, Tables 3 and 4).

Discussion

Limitations of our study include that the clinical evaluation was performed over only 20 eyes, reducing the statistical power of the conclusions; and the lack of a control group. It is difficult for us (as a private practice) to find a similar cohort and evaluate them at different time stamps to simulate the timing after refractive surgery, but without having (any kind of) surgery on those.

The low number of eyes can be explained by several reasons:

- Hyperopic treatments are in our centre much less often than myopic ones (~1:4)
- Hyperopic treatments are treated in our centre much less often in aspheric mode and more often in customized mode since they either:
 - show larger aberrations, or
 - large angle kappa (or alpha or lambda),
- are secondary treatments, or
- suffer from presbyopia as well.

- We have already reported and published an essentially similar study for myopia also with another 20 eyes (and we wanted to compare to those as well).

The clinical evaluation was limited to HA treatments. Evaluation was limited to LASIK Epi-LASIK techniques, thus
Table 4

<table>
<thead>
<tr>
<th>Planned OZ (mm)</th>
<th>Achieved EOZ (mm)</th>
<th>Nomogrammed POZ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>4.50</td>
<td>5.75</td>
</tr>
<tr>
<td>6.25</td>
<td>5.50</td>
<td>7.25</td>
</tr>
<tr>
<td>7.50</td>
<td>6.50</td>
<td>8.75</td>
</tr>
<tr>
<td>8.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results cannot be extrapolated to LASIK treatments without further clinical evaluations. Finally, in our sample, POZ significantly correlated with defocus ($r^2 = 0.7$, $p < 0.005$), indicating that the two variables of the bilinear fit were interdependent.

A limitation of the study is its observational nature, since no controls are included. However, considering a historic control group treated a few years ago with a different system using a Munnerlyn algorithm we determined a 5% smaller EOZ diameters or 9% smaller EOZ areas compared to our current results.

Until today, there is no proof that the asphericity alone plays a major role in the visual process. We still do not know whether an asphericity $Q = -0.25$ is better than $Q = +0.50$, we only know that the asphericity of the "averaged" human
cornea is about -0.28. As well, no absolute optimum has been found, despite of some remarkable theoretical works$^{20-28}$. When a patient is selected for non customized aspherically treated, the global aim of the surgeon should be to leave all existing high order aberrations (HOA) unchanged because the best corrected visual acuity, in this patient, has been unaffected by the pre-existing aberrations29. Hence, all factors that may induce changes in HOA$^{28-31}$, such as biomechanics, need to be taken into account prior to the treatment to ensure that the preoperative HOAs are unchanged after treatment.

Jiménez et al.32 found that binocular function deteriorates more than monocular function after LASEK, and that this deterioration increases as the interocular differences in aberrations and corneal shape increase.

One of the most significant side effects in laser corneal refractive surgery with classical approaches is the induction of spherical aberration33, which causes halos and reduced contrast sensitivity34, resulting in deviations from the optimal corneal line-shape post-operatively. Anyway, from the literature it is reported a significant decreasing in the Q-Value after two months post surgery, and after three months the asphericity data can be considered stable35.

Jiménez et al.36 deduced a mathematical equation for corneal asphericity after refractive surgery, when the Munnerlyn formula is used. Equations for corneal asphericity may be of clinical relevance in quantitatively studying the role of different factors (decentration, type of laser, optical role of the flap, wound healing, biomechanical effects, technical procedures) during corneal ablation.

The measurement technique used in this study actually imposes restrictions on optical zone size that may underestimate it for decentrations. On the other hand, topographical data may not fit to Zernike polynomials up to the seventh radial order (36 Zernike coefficients). It is known that the residual irregularity of the cornea not fit by Zernike’s may have a significant impact on visual quality37. Ignoring this effect might bias the effective optical zone size determined leading to an overestimate that can be significant.

Comparing this result with our previous study for myopic astigmatism38, we observed that EOZ is significantly smaller in hyperopic astigmatism compared to myopic astigmatism. In myopic astigmatism, we observed a mean EOZ of 6.7-mm analyzed with the ΔRMS$_{HOAb}$ method and 6.42-mm analyzed with the RMS(ΔHOAb) method, whereas in hyperopic astigmatism the values were 6.47-mm for the ΔRMS$_{HOAb}$ method and 5.67-mm analyzed with the RMS(ΔHOAb) method. The mean relative ratio between EOZ and POZ diameters was 0.97 ± 0.06 for myopia and 0.90 ± 0.12 for hyperopia, whereas the mean relative ratio between EOZ and POZ surfaces was 0.95 ± 0.12 for myopia and 0.81 ± 0.26 for hyperopia. Determined EOZ for hyperopic astigmatism were more scattered than the ones for myopic astigmatism. For equivalent corrections, mean EOZ were smaller for hyperopia than for myopia by $-8\% \pm 8\%$ in diameter, or by $-15\% \pm 13\%$ in surface. As well, the impact of the defocus correction in reducing the size of the EOZ is much stronger in hyperopia than in myopia.

Multivariate correlation analysis showed that absolute and relative differences between FOZ$_{rue}$ and FOZ$_{rue}$, as well as, between EOZ and POZ were larger for smaller POZ or for larger Defocus corrections.

For our analyses, the threshold value of 0.375 D for determining EOZ was arbitrarily chosen based upon the fact that with simple spherical error, degradation of resolution begins for most people with errors between 0.25 D and 0.50 D, and a similar value can be found for astigmatism. If other value was used, the general conclusions derived in this study will still hold. However, the numerical values can be a bit larger for threshold values larger than 0.375 D, and smaller for values below 0.375 D. We have actually re-run the analyses for 0.25 D and 0.50 D thresholds, and found -48% smaller EOZ and $+10\%$ larger EOZ respectively.

For all methods, our search algorithm is an “increasing diameter” analysis, this ensures that the smallest EOZ condition is found. Finally, our search was set to start from 4-mm upwards, i.e. 3.99 mm is the smallest EOZ that could be found. We have done that because for very small analysis diameters, the Zernike fit seems to be less robust, mostly due to the decreasing sampling density within the unit circle.

The magnitude of astigmatism corrected could affect the diameter at which the EQ of RMS$_{Ho}$ is greater than 0.375 D. For example, an eye with 1 DS +3 D of hyperopia vs. 2.5 DS of hyperopia would have different EOZ and FOZs based on the definition. Argento et Cosentino5 reported that larger optical zones decrease postoperative high-order aberrations. They found the measured high-order aberrations to be less in eyes with larger optical zones.

We have used a similar approach to the one used by Tabernero et al.38 to determine the functional optical zone (FOZ) of the cornea pre and postoperatively. They observed a reduction from FOZ$_{rue}$ of 9.1-mm to FOZ$_{rue}$ of 6.9-mm. Noteworthy and opposed to our findings, they did not find a greater contraction of FOZ for increasing corrections.

Qazi et al.1 using a different approach observed over a sample of eyes similar to ours, that hyperopic treated eyes, on average, had larger topographic FOZs after LASK, but with less uniformity of curvature and power change than myopic eyes.

Although POZ, TZ, and TAZ are parameters defined by the laser treatment algorithms, EOZ must be determined postoperatively (from the differences to the baseline) and may change with time because of healing and biomechanical effects. In the same way, it would be possible that the FOZ were larger postoperatively than it was preoperatively, or that the FOZ could be larger than the POZ or even than the TAZ. Figure 3 shows the evolution and change of the OZ with time. FOZ and EOZ showed smaller values for shorter follow-up times and continues increasing from 1, to 3 and 6-months after treatment. This behaviour is consistent with other observations of the change of induced aberrations and quality of vision with time39, in which the amount of induced aberrations reduces with time getting closer to the original aberration pattern for longer follow-up times. Long-term follow-up on these eyes will help determine whether these accurate results also show improved stability compared to previous experiences.

In conclusion, our results suggest that wave aberrations can be a useful metric for the analysis of the effective optical zones of refractive treatments or for the analysis of functional optical zones of the cornea or the entire eye by setting appropriate limit values.
Conflict of interest

Dr. Camellin has no proprietary interest in the materials presented herein.
Arba-Mosquera is employee at SCHWIND eye-tech-solutions.

References