Tear Film Surface Quality with Soft Contact Lenses Using Dynamic Videokeratoscopy

Miriam Kapf, Fan Yi, D. Robert Iskander, Michael J. Collins, Alyha J. Shaw, and Benjamin Straker

ABSTRACT

PURPOSE: To investigate changes in tear film surface quality after commencing soft contact lens wear.

METHODS: Tear film surface quality (TSQ) was assessed during the interblink period using dynamic videokeratoscopy at 25 Hz. A quantitative value of TSQ is derived for each raw Placido ring image. Eleven young subjects with normal tear characteristics participated in the study. Dynamic videokeratoscopy was taken three times per day: in the morning, at lunchtime, and in the afternoon. This was done on two baseline days (bare eye) and on the first and seventh days of lens wear for a conventional hydrogel lens and following a week of no lens wear, for a further week of silicone hydrogel lens wear. Additionally, clinical tests to assess TSQ were conducted and subjects were also asked to rate the subjective dryness of their eyes.

RESULTS: All lens wear measurements showed a significant worsening of TSQ compared to bare eye measurements (repeated measures ANOVA, P<0.01). A significant diurnal change was found on the first day of silicone hydrogel contact lens wear, where TSQ improved during the day (P<0.045). However, no diurnal changes were found in TSQ for the other lens wearing days or for the bare eye condition (P>0.05). The subjective rating of dryness correlated with TSQ values (Pearson’s r=0.62, P<0.05) for the bare eye condition, but not during contact lens wear. TSQ derived from the right and left bare eyes of the same individuals showed a significant correlation (Pearson’s r=0.61, P<0.05).

CONCLUSIONS: The measurement of TSQ using dynamic videokeratoscopy differentiates between bare eye and lens wearing conditions. It also shows a small systematic improvement in tear surface quality during the first day of silicone hydrogel lens wear and a significant association with subjective dryness for the bare eye condition.

Key Words: high speed videokeratoscopy; tear film; dry eye; contact lens.

INTRODUCTION

The tear film is important for the optical quality of the eye and the health of the ocular surface. From the optical perspective, the role of the tear film is to form a smooth and stable refracting surface over the cornea. However, the pre-ocular tear film is constantly changing. It undergoes a formation (build-up) phase immediately after a blink, a relatively stable inter-blink phase and eventually an unstable phase which can result in break-up in subjects with dry eyes or when the eye is left open for a sufficiently long period of time.1,2

Tear film stability can be assessed with a number of invasive and non-invasive techniques. In traditional clinical practice, an invasive procedure of estimating tear film break-up time (TBUT) is performed using a slit lamp biomicroscope with the aid of fluorescein dye.3 Although the procedure is convenient, the instillation of a fluorescent dye can change the condition of the original tear film and may cause its destabilisation.3 Therefore, non-invasive methods...
for evaluating the quality of tear film are preferred. Also, one may be interested in the quality of tear film surface before its break-up is observed.

There are a number of non-invasive methods that can be used to estimate the quality of tear film. For example, a Tearscope can be used to project a grid pattern on a corneal surface. The time after a complete blink to the appearance of a discontinuity in tear film coverage or a distortion in the grid pattern is normally taken to indicate the TBUT, while the quality of the reflected grid pattern can be used to subjectively assess tear film quality. Methods adopting interferometry, Shack-Hartmann wavefront sensing, curvature sensing, and methods based on direct video recording have also been used to estimate tear film quality. However, these methods often investigate only a small portion of the tear film surface, may be sensitive to eye movements (interferometry and curvature sensing) and can be influenced by natural changes in pupil size (wavefront sensing).

Evaluation of tear film stability with a digital videokeratoscope is one of the non-invasive techniques developed in recent years. Most of the currently available videokeratoscopes are based on the Placido disk principle. During the measurement, the pre-corneal tear film is used as a convex mirror to view the reflected Placido ring pattern. Although the main purpose of a videokeratoscope is to estimate corneal topography, the raw videokeratoscopic images of the reflected Placido disks can also be used to assess tear film quality since the Placido target is reflected from the anterior surface of the tear film. The Placido disk videokeratoscope can then be considered as a method for non-invasive tear film assessment following the principles first envisaged by Mengher and later developed by Brown and Cho and Guillou. To measure tear dynamics over time, the technique must use a series of videokeratoscope images (a video recording) and this approach has been termed high speed (or dynamic) videokeratoscopy (HSV).

Several research groups have reported their work on non-invasive tear film characterization using time-based videokeratoscope measurements. In these studies, changes in corneal power maps, root mean square (RMS) value of corneal aberrations, and surface regularity and surface asymmetry indices were used as indicators for estimating tear film stability. However, all the above indicators are derived from the reconstructed topographic data which can become inaccurate when the tear surface becomes locally irregular. Furthermore, all these methods suffer from a decrease in accuracy due to natural micro-movements of eye position. To overcome some of the limitations of previous methods based on videokeratoscopy, we recently reported methods that were independent of the eyes natural micro-movements for analysis of tear film stability and in particular, techniques for estimating the tear film build-up and break-up times.

Various studies have shown that contact lens wear destabilizes the tear film. During contact lens wear the tear film is separated by the contact lens into a pre- and post-lens tear film. The lipid layer of the pre-lens tear film is much thinner than that over the same eye without lens wear. The thickness of the aqueous phase of the pre-lens tear film seems to be dependent on the lens material and design, but is always thinner than without lenses. The naturally occurring mucins of the ocular surface are present on the surface of soft lenses but are typically altered in volume and surface charge. The combined changes in lipid, aqueous and mucin components of the tears layer on soft lenses appears to lead to impaired stability of the tear film, making it more vulnerable to disturbances and evaporation, particularly in subjects with dry eyes. A study of tear film breakup on hydrogel lenses using static videokeratoscopy has been reported earlier, where the raw Placido disk images were used to assess the number and location of break-ups.

In this study, we report on the evaluation of tear film surface quality during the inter-blink interval using the dynamic videokeratoscopy technique. Tear surface quality was assessed in a group of subjects for eyes without contact lenses and again during wear of hydrogel contact lenses and silicone hydrogel lenses.

METHODS

Clinical Protocol

Eleven subjects (six male and five female) aged 20 to 31 years (mean age 23 years) were recruited for the study. All subjects had corrected visual acuity of 6/6 or better in both eyes and were emmetropic or had a slight refractive error (sphere power ranged between +/−1 D, cylinder power no more than 1D). All subjects had good ocular and general health and each was screened for anterior eye conditions that could contraindicate contact lens wear. No subject reported a history of significant dry eye symptoms and none had worn contact lenses for at least one month prior to the commencement of the study. All subjects gave informed consent and the study was approved by the university research ethics committee.

The study was conducted over four consecutive weeks although not all subjects completed all four weeks. During the first week, no contact lenses were worn and bare eye measurements were taken from both eyes on the first and seventh days of the week (11 subjects). In the second week, each subject wore a hydrogel lens (FDA group IV, 58%, etafilcon A), in one eye (randomly chosen) and measurements were taken in the lens-wearing eye on the first and seventh days of the week (10 subjects). Following a week of no lens wear, the hydrogel lens was exchanged for a silicone hydrogel lens (FDA group I, 47%, galyfilcon A) and measurements were taken on the first and seventh day of the fourth week (5 subjects). The reduction in the number of subjects during the week of silicone hydrogel lens wear was the result of subject dropout due to discomfort and/or time constraints. All statistical tests were adjusted to account for the different number of subjects in each section of the study.

The two contact lenses used in this study were clinically assessed as being good fits and the subjects reported them to be comfortable. All lenses had a diameter of 14.0 mm, a base curve of 8.3 mm and power of −1.00 D. The lenses were worn in one eye only (monovision, but not necessarily providing optimal visual correction) on a daily wear schedule. Subjects used a range of common multipurpose solutions to care for the lenses. It would have been preferable to use only one type
of solution to control this study variable, but unfortunately the one solution brand we chose to use was withdrawn from the market for safety reasons during the study.

Subjects had measurements taken at three different times each day; in the morning (between 8-10 am), at lunchtime (12-2 pm) and in the afternoon (4-6 pm). Five individual high speed videokeratoscopy (HSV) measurements were taken at each measurement session. Subjects were advised to fixate on the green light in the instrument (Medmont E300 videokeratoscope) and were instructed to blink, then open their eyes (not wide, but naturally open), and to avoid further blinking during the short period of data collection. Each measurement was taken over a period of 8 seconds at a videokeratoscope sampling rate of 25 Hz (equivalent to one image every 40 ms). Therefore each 8 second measurement resulted in 200 individual measurement frames. Each subject’s initial blink was included at the beginning of each 8 sec recording (analysis procedure will be described later). Measurements that showed poor fixation or significant variation in the corneal apex distance to the imaging device were excluded. If the analysis area was obstructed by the eyelashes or the eyelid itself, the measurement was rejected and the subject was asked to open their eyes slightly wider during the next recording. Measurements were also repeated if tear debris or mucin were seen in the recorded images. In such cases, the subject was asked to blink a few times to flush away the debris and a new measurement was taken. The measurements were carried out in a laboratory where the temperature ranged between 22.1º C and 25.6º C with a mean of 23.6º C (±0.7º C), and the humidity ranged between 30% and 65%, with a mean of 46.9% (±7.1%) over the course of the four weeks of the study. At each measurement session, the subjects were also asked to rate the subjective ‘feeling of dryness’ in their eyes on an analogue scale from 0 to 10, where 0 represents very dry eyes and 10 represents no dry eye symptoms.

During the first week of bare eye measurements, on the morning of the first day, a range of other tear function assessments were undertaken. The tear film break-up time was measured using blue light and a slit lamp biomicroscope by instilling fluorescein and subjects were asked to blink several times and then to keep their eyes open and to suppress blinking. The McMonnies dry eye questionnaire was administered and scored. The Zone Quick (FCI Ophthalmics Inc. Marshfield Hills, MA, USA) phenol red thread test was used according to the manufacturer’s recommendations to estimate tear volume. An evaluation of the anterior eye (including assessment of lid margins, lid eversion and surface staining) was also conducted using a slit-lamp biomicroscope.

Analysis of High Speed Videokeratoscopy Data

A set of images captured during contact lens wear is shown in figure 1. The quality of the ring reflections is closely associated with the quality of the tear film surface. Thus, the clinical problem of estimating tear film surface quality can be reduced to the technical problem of estimating the image quality of videokeratographs. In order to estimate the image quality of a HSV ring pattern, we first select a square image section, centred on the instrument’s axis, and defined as intensity matrix $I(x,y)$, $x = 1,2,..., L$, $y = 1,2,..., L$ where L denotes its size in pixels. We then define a set of radial image profiles

$$I_j(r,\theta), r = 1,2,...,r_{max}, \theta = 0,\delta_\theta, 2\delta_\theta,...,2\pi - \delta_\theta$$

sampled from $I(x,y)$ using nearest neighbour interpolation method that forms an $n_r \times n_\theta$ polar-grid matrix

$$I = \begin{bmatrix}
I_j(1,0) & I_j(1,\delta_\theta) & \ldots & I_j(1,2\pi - \delta_\theta) \\
I_j(2,0) & I_j(2,\delta_\theta) & \ldots & I_j(2,2\pi - \delta_\theta) \\
\vdots & \vdots & \vdots & \vdots \\
I_j(r_{max},0) & I_j(r_{max},\delta_\theta) & \ldots & I_j(r_{max},2\pi - \delta_\theta)
\end{bmatrix}$$

where $n_r = r_{max}$ and $n_\theta = 2\pi / \delta_\theta$. Figure 2 shows two examples of such Cartesian to polar transformations.

The number of rings is then counted for each column of the matrix I that corresponds to a semi-meridian in the original HSV image to find out the discontinuities in the ring pattern. These discontinuities often indicate instabilities in tear film surface. To count the rings, edges in the polar image need to be detected and this could have been performed by the Marr-Hildreth edge detection algorithm, for example, in a similar way as described in our earlier work. However, changes in the characteristics of the human anterior eye pattern, such as the variation in iris color, different pupil shapes and sizes, and the natural changes of pupil size during a long measurement with HSV makes the ring detection task difficult. There are no “off-the-shelf” edge-detecting algorithms that are universally applicable for all types of eyes. Examples of how pupil size affects the reflection of the Placido rings pattern and subsequently its polar image representation are shown in figure 2. If the pupil size encompasses the analysis area, as it is shown in figure 2a, the
resulting radial image representation remains of relatively uniform intensity. However, when the pupil is smaller than the analysis area (Figure 2b), the resulting radial image shows significant variations in the intensity that cannot be simply removed with standard histogram equalisation techniques. In particular, it can be seen that for a small pupil, part of the subject’s iris is included in the sampled radial image. The contrast of Placido rings on the light colour iris is degraded, which makes it even harder to detect the sometimes-already-blurred rings.

To overcome these deficiencies, a customised edge detection method was developed, in which we first estimated the average local radial intensity image profile that was then fit to a parametric function composed of two parts. An iterative least-square procedure was used to find the optimal combination of the two parametric parts of the function. The modelled local average intensity was then subtracted from the average local radial intensity image profile that was then fit to a parametric function composed of two parts. An iterative least-square procedure was used to find the optimal combination of the two parametric parts of the function. The edge detection involved estimating all edges with a uniform intensity difference from the background, which makes it even harder to detect the sometimes-already-blurred rings.

In order to achieve a parameter that would be proportional to the surface quality of tear film and that would be bounded between 0 and 1, we will use in the remainder of the paper the normalized TSQ indicator given by

$$
\text{TSQ}_{norm} = \left(\frac{10 - \text{TSQ}}{10} \right),
$$

as an indicator of the tear film surface quality (TSQ) at times t_n, $n = 1, 2, ..., N$. The larger the variance the poorer the quality of the ring image indicating poorer surface quality of tear film.

A typical example of estimating tear film surface quality is shown in Figure 4 in which one can clearly see the blink, the tear film build-up phase (up to 1 second), and the phase in which the tear film is relatively stable. In general, the tear film surface quality (TSQ) indicator estimated from the set of HSV data can be used to estimate three important parameters: tear film build-up time (TBLD), tear film break-up time (TIBUT), and the average tear film surface quality in the relatively stable inter-blink phase of the tear film. In this study, we concentrated on the tear film surface quality during the inter-blink period to address the question of whether contact lenses cause a measurable change in the tear surface compared with the bare eye.

Analysis of the videokeratoscope data (5 x 8 sec recordings per measurement session) was done at a later time. The first frame after the initial blink was identified in the recording. Each sample was made up of this frame plus the following 149 frames (equivalent to a period of 6 seconds, see Figure 4). To remove the tear build-up phase following each blink from the analysis, the TSQ data was sampled from the 26th (1 sec post-blink) to the 150th frame (6 sec post-blink) of each measurement (i.e., during the relatively stable inter-blink phase of the tear film). By limiting the analysis to no more than 6 sec post-blink and choosing subjects with good tear quality, we also minimized the variability in TSQ that is potentially associated with both the tear build-up and break-up phases of the tear dynamics. The area of the tear film/cornea that was analysed was defined as the inferior half of a circular area centred on the rings with a diameter of 6 mm (see Figure 3). This was done to avoid possible interference from the reflections from the eyelashes, which could have been mistaken by the algorithm as changes in tear film.

Each 6 second sample of 150 frames was filtered to remove outlier values and to improve the reliability of the tear surface quality mean for that sample. Firstly, the measurements in each set were detrended and their signal powers (variances)
calculated. Out of these, the measurement with the smallest variance was taken as the reference measurement. Subsequently all other measurements from that data set were compared to this reference measurement. Only signals with powers within 3 dB of the reference measurement were included in the analysis.

In some cases, the filtering procedure outlined above eliminated a number of the measurements from a particular measurement session. Of the 5 x 8 second recordings taken at each measurement session, the lowest number remaining after filtering was two at a session and for most sessions, there were 3 or 4 recordings available for analysis and subsequent averaging. After reviewing the recordings that were eliminated by the filtering procedure, the poor measurements were mainly caused by transient local disturbances due to tear film debris and not consistent changes in the tear film quality.

Statistical analysis of normalised TSQ was performed using SPSS 15.0.1 software. Statistical procedures including the Pearson’s correlation test and repeated measures ANOVA were used. For all statistical tests a \(p \)-value of less than 0.05 was considered significant. TSQ data was assumed to be normally distributed.

RESULTS

Diurnal Changes with Bare Eye

The normalized tear surface quality values, \(TSQ_{norm} \) for the eleven subjects with bare eyes ranged from 0.8956 to 0.9897, \((0.9685\pm0.0118; \text{that is, mean\pmstandard deviation}) \) across the six measurement sessions during the first week of the study. There was no evidence of a systematic change in \(TSQ_{norm} \) as a function of time of day from the morning 0.9685\(\pm \)0.0092, to lunch 0.9681\(\pm \)0.0101 to afternoon 0.9688\(\pm \)0.0075 measurement sessions. A repeated measures ANOVA showed no statistically significant effect of time of day \((P=0.911) \) or day of week (day 1 versus day 7). Correlation in values of \(TSQ_{norm} \) between the right and left eyes of the bare eyes of the same individuals showed a significant association (Pearson’s \(r = 0.61 \)).

FIGURE 3

The effect of local background subtraction on the performance of edge detection algorithm for radial profile images that contain significant part of lighter iris. Note that without the background subtraction a significant number of rings are missed in the edge detection process.

FIGURE 4

A typical example of the estimation of the tear film surface quality for a subject using high speed videokeratoscopy images. The tear surface quality score (TSQ) is normalised such that a score of 1 is best (i.e., good tear surface quality).
The Effect of Contact Lenses

The wearing of both the hydrogel and the silicone hydrogel lenses caused the TSQ to significantly worsen (see figure 5). The group mean TSQnorm for the bare eye condition averaged over the 6 measurement sessions was 0.9668±0.0120 for the group of measurements corresponding to those of contact lens wear, while during hydrogel lens wear it was 0.9427±0.1640, and for the silicone hydrogel wearing period it averaged 0.9407±0.0179.

A repeated measures ANOVA on the effect of the type of lenses, time of day (morning, lunch and afternoon) and time of week (day 1 or day 7), showed a significant effect of contact lens wear on TSQnorm (P<0.01), but no systematic time of day or time of week effects (P>0.05). Post-hoc analysis showed that both the hydrogel and silicone hydrogel lenses gave significantly worse TSQnorm values than the bare eye condition, but that there was no significant difference in TSQnorm values between the hydrogel and the silicone hydrogel lens wear periods (P>0.05).

Repeated measures ANOVA showed a significant time of day effect for the TSQnorm values derived when wearing the silicone hydrogel lenses. The TSQnorm values improved slightly over the course of the day on day 1 of the week (P=0.045). Similar analysis of the hydrogel lens wear period showed no significant change in the TSQnorm values over the course of the day (P>0.05). There were no systematic changes in TSQnorm values for the hydrogel or silicone hydrogel lens wear periods as a function of time of week (day 1 versus day 7).

Tear Surface Quality and Other Tear Tests

We compared the tear surface quality values obtained with the bare eye condition (week 1, visit 1) with common tear function tests (McMonnies dry eye questionnaire, fluorescein TBUT, phenol red thread test and subjective dryness rating) conducted at the same visit. The results of Pearson’s correlations are shown in table 1 with no significant correlations for the McMonnies dry eye questionnaire (r = 0.13, P>0.05), fluorescein TBUT (r = 0.22, P>0.05) or phenol red thread test (r = 0.06, P>0.05). However there was a weak, but statistically significant correlation between the bare eye subjective dryness rating and the TSQ values (r=0.62, P<0.05). This association between TSQ and subjective dryness was not maintained during contact lens wear.

DISCUSSION

We found in this study that the high speed videokeratoscope technique can be used to discriminate the effects of soft contact lens wear on the surface quality of the tears compared to the bare eye condition, in subjects selected to have good tear quality. It is well known that soft lens wear leads to unstable tear film, with studies showing diminished tear break-up time,47,48 reduced tear meniscus height,39,40 and pre-lens tear thickness.41 Our results add to this body of evidence, showing that during soft contact lens wear the quality of the tear film is poorer in the inter-blink interval.

We can speculate on the potential mechanisms leading to changes in the tear surface quality that we measured with the high-speed videokeratoscope technique. The Placido rings in the videokeratoscope are reflected from the anterior surface of the tears (i.e., the outer surface of the lipid layer). This is a specular reflection, like that from the surface of a mirror. A general curvature change in the shape of the tear surface would simply cause the reflected image of the Placido ring to be displaced and would not alter the TSQ value, as this is derived from the contrast of the reflected Placido ring edge. Therefore the loss of ring contrast must relate to the quality of the tear surface. This could be either due to regional changes in the refractive index of the lipid surface or due to regional changes in the surface smoothness (i.e., in engineering terms, surface roughness not surface form) of the lipid layer.

A local change in refractive index would alter the contrast of the Placido ring,42 but the change in reflection, governed by Fresnel’s law of reflection, would require a large change in lipid layer composition to achieve the required refractive index variation. The image processing procedure used in our methodology also tends to minimize the effect of this potential contrast change at the ring edge. A more likely explanation for the changes in tear surface quality would seem to be the variation of surface smoothness of the tears and, therefore, the lipid layer. There are thought to be significant variations in the smoothness and homogeneity of the lipid layer amongst individuals when measured with the tearscope (Guillon 1998).43 Non-invasive tear film assessment techniques including high-speed videokeratoscopy43 have used the local disruption of the reflected pattern from the tear to estimate tear break-up time (see figure 1). It seems likely that the tear surface quality value that we derive measures a similar characteristic of the
the measures of fluorescein tear break-up time or tear volume or lysozyme during the first day of wear. It could be related to progressive surface deposition of mucin during silicone hydrogel lens wear. It is not obvious why this should occur, but improvement in TSQ during the first day of silicone hydrogel lens wear. One of the more interesting findings of this study was a slight, but statistically significant improvement in TSQ during the first day of silicone hydrogel lens wear. It is not obvious why this should occur, but could be related to progressive surface deposition of mucin or lysozyme during the first day of wear.

There was no correlation between the TSQ results and the measures of fluorescein tear break-up time or tear volume (phenol red thread test). This is not surprising given that all these tests measure different aspects of tear quality and there are various studies which indicate that different tear tests frequently do not necessarily correlate with each other.

The mechanism of the sensation of dryness is not fully understood and is probably multifactorial.

The use of high-speed videokeratoscopy shows promise as a method for investigating the surface quality of the tear film. The method clearly differentiated between the tear surface of bare eye and contact lens wearing conditions for both hydrogen and silicone hydrogel materials though there was no difference between the two materials. It did show a small but systematic improvement in tear surface quality during the first day of silicone hydrogel lens wear and a significant association with subjective dryness for the bare eye condition. It will be of interest to use this technique in the future to study the tear surface quality of eyes with various tear abnormalities.

References